Causal interpretation and quantum phase space

被引:9
作者
Dias, NC [1 ]
Prata, JN [1 ]
机构
[1] Univ Lusofona Humanidades & Tecnol, Dept Engn, Dept Matemat, P-1749024 Lisbon, Portugal
关键词
De Broglie-Bohm interpretation; quasi-distributions; Wigner quantum mechanics;
D O I
10.1016/S0375-9601(01)00747-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the de Broglie-Bohm interpretation can be easily implemented in quantum phase space through the method of quasi-distributions. This method establishes a connection with the formalism of the Wigner function. As a by-product, we obtain the rules for evaluating the expectation values and probabilities associated with a general observable in the de Broglie-Bohm formulation. Finally, we discuss some aspects of the dynamics. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 29 条
[1]   Interference and corpuscular light. [J].
不详 .
NATURE, 1926, 118 :441-442
[2]   FORMULATION OF QUANTUM MECHANICS BASED ON THE QUASI-PROBABILITY DISTRIBUTION INDUCED ON PHASE SPACE [J].
BAKER, GA .
PHYSICAL REVIEW, 1958, 109 (06) :2198-2206
[3]   WIGNER FUNCTION AND OTHER DISTRIBUTION-FUNCTIONS IN MOCK PHASE SPACES [J].
BALAZS, NL ;
JENNINGS, BK .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (06) :347-391
[4]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[5]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[6]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[7]   A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF HIDDEN VARIABLES .2. [J].
BOHM, D .
PHYSICAL REVIEW, 1952, 85 (02) :180-193
[8]   QUANTUM COLLISION-THEORY WITH PHASE-SPACE DISTRIBUTIONS [J].
CARRUTHERS, P ;
ZACHARIASEN, F .
REVIEWS OF MODERN PHYSICS, 1983, 55 (01) :245-285
[9]   GENERALIZED PHASE-SPACE DISTRIBUTION FUNCTIONS [J].
COHEN, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (05) :781-&
[10]   Features of time-independent Wigner functions [J].
Curtright, T ;
Fairlie, D ;
Zachos, C .
PHYSICAL REVIEW D, 1998, 58 (02)