Non-integral representation theory of even multiplicity finite W-algebras

被引:2
作者
Brown, Jonathan [1 ]
Goodwin, Simon M. [2 ]
机构
[1] Gonzaga Univ, Dept Math, Spokane, WA 99258 USA
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Finite W-algebras; Representation theory; Algebraic Lie theory; ORBITAL INTEGRALS; PRIMITIVE-IDEALS;
D O I
10.1016/j.jalgebra.2013.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We complete the classification of the finite dimensional irreducible representations of finite W-algebras associated to even multiplicity nilpotent elements in classical Lie algebras. This extends earlier work in Brown and Goodwin (2013) [BG1], where this classification is determined for such representations of integral central character. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:30 / 45
页数:16
相关论文
共 13 条
[1]   PRIMITIVE-IDEALS AND ORBITAL INTEGRALS IN COMPLEX CLASSICAL-GROUPS [J].
BARBASCH, D ;
VOGAN, D .
MATHEMATISCHE ANNALEN, 1982, 259 (02) :153-199
[2]   PRIMITIVE-IDEALS AND ORBITAL INTEGRALS IN COMPLEX EXCEPTIONAL GROUPS [J].
BARBASCH, D ;
VOGAN, D .
JOURNAL OF ALGEBRA, 1983, 80 (02) :350-382
[3]   On changing highest weight theories for finite W-algebras [J].
Brown, Jonathan ;
Goodwin, Simon M. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (01) :87-116
[4]   Representation theory of rectangular finite W-algebras [J].
Brown, Jonathan .
JOURNAL OF ALGEBRA, 2011, 340 (01) :114-150
[5]   Finite dimensional irreducible representations of finite W-algebras associated to even multiplicity nilpotent orbits in classical Lie algebras [J].
Brown, Jonathan S. ;
Goodwin, Simon M. .
MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (1-2) :123-160
[6]  
Brundan J, 2008, MEM AM MATH SOC, V196, P1
[7]   Good grading polytopes [J].
Brundan, Jonathan ;
Goodwin, Simon M. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :155-180
[8]   Highest Weight Theory for Finite W-Algebras [J].
Brundan, Jonathan ;
Goodwin, Simon M. ;
Kleshchev, Alexander .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[9]  
Joseph Anthony, 1978, CR HEBD ACAD SCI, V287, pA303
[10]   WHITTAKER VECTORS AND REPRESENTATION THEORY [J].
KOSTANT, B .
INVENTIONES MATHEMATICAE, 1978, 48 (02) :101-184