STANDING WAVE CONCENTRATING ON COMPACT MANIFOLDS FOR NONLINEAR SCHRODINGER EQUATIONS

被引:2
作者
Byeon, Jaeyoung [1 ]
Kwon, Ohsang [2 ]
Oshita, Yoshihito [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[2] Chungbuk Natl Univ, Dept Math, Cheongju 362763, Chungbuk, South Korea
[3] Okayama Univ, Dept Math, Okayama 7008530, Japan
基金
新加坡国家研究基金会;
关键词
Concentration phenomena; infinite dimensional reduction; nondegeneracy; nonlinear Schrdinger equation; POSITIVE BOUND-STATES; MULTI-BUMP SOLUTIONS; CRITICAL FREQUENCY; SEMICLASSICAL STATES; ELLIPTIC-EQUATIONS; RADIAL SOLUTIONS; EXISTENCE; POTENTIALS; SYMMETRY; UNIQUENESS;
D O I
10.3934/cpaa.2015.14.825
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For k = 1, ... , K, let M-k be a q(k)-dimensional smooth compact framed manifold in R-N with q(k) epsilon {1, ... , N - 1}. We consider the equation -epsilon(2) Delta u + V(x)u - u(p) = 0 in R-N where for each k epsilon {1, ... , K} and some m(k) > 0; V (x) = |dist(x, M-k)|(mk) + O(|dist(x, M-k)|(mk+1)) as dist( x, M-k) -> 0. For a sequence of epsilon converging to zero, we will find a positive solution u(epsilon) of the equation which concentrates on M-1 boolean OR ... boolean OR M-K.
引用
收藏
页码:825 / 842
页数:18
相关论文
共 49 条
[1]   Radial solutions concentrating on spheres of nonlinear Schrodinger equations with vanishing potentials [J].
Ambrosetti, A. ;
Ruiz, D. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :889-907
[2]   Bound states of nonlinear Schrodinger equations with potentials vanishing at infinity [J].
Ambrosetti, A. ;
Malchiodi, A. ;
Ruiz, D. .
JOURNAL D ANALYSE MATHEMATIQUE, 2006, 98 (1) :317-348
[3]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[4]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[5]   Concentration around a sphere for a singularly perturbed Schrodinger equation [J].
Badiale, M ;
D'Aprile, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (07) :947-985
[6]   The semiclassical limit of the nonlinear Schrodinger equation in a radial potential [J].
Benci, V ;
D'Aprile, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (01) :109-138
[7]   Existence of multi-bump standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Oshita, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (11-12) :1877-1904
[8]   Standing waves with a critical frequency for nonlinear Schrodinger equations, II [J].
Byeon, J ;
Wang, ZQ .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (02) :207-219
[9]   Standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Wang, ZQ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (04) :295-316
[10]   Standing waves for nonlinear Schrodinger equations with a radial potential [J].
Byeon, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (08) :1135-1151