Artificial Intelligence for Outcome Modeling in Radiotherapy

被引:11
作者
Cui, Sunan [1 ]
Hope, Andrew [2 ]
Dilling, Thomas J. [3 ]
Dawson, Laura A. [2 ]
Ten Haken, Randall [4 ]
El Naqa, Issam [5 ]
机构
[1] Stanford Univ, Palo Alto, CA 94305 USA
[2] Univ Toronto, Princess Margaret Canc Ctr, Toronto, ON, Canada
[3] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL USA
[4] Univ Michigan, Ann Arbor, MI USA
[5] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL USA
关键词
Canada; RADIATION-THERAPY; DECISION-SUPPORT; RADIOMICS MODEL; NEURAL-NETWORKS; FDG-PET; PREDICTION; SELECTION; SURVIVAL; INFORMATION; ADAPTATION;
D O I
10.1016/j.semradonc.2022.06.005
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Outcome modeling plays an important role in personalizing radiotherapy and finds appli-cations in specialized areas such as adaptive radiotherapy. Conventional outcome models that are based on a simplified understanding of radiobiological effects or empirical fitting often only consider dosimetric information. However, it is recognized that response to radiotherapy is multi-factorial and involves a complex interaction of radiation therapy, patient and treatment factors, and the tumor microenvironment. Recently, large pools of patient-specific biological and imaging data have become available with the development of advanced biotechnology and multi-modality imaging techniques. Given this complexity, artificial intelligence (AI) and machine learning (ML) are valuable to make sense of such a plethora of heterogeneous data and to aid clinicians in their decision-making process. The role of AI/ML has been demonstrated in many retrospective studies and more recently prospective evidence has been emerging as well to support AI/ML for personalized and precision radiotherapy.Semin Radiat Oncol 32:351-364 (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:351 / 364
页数:14
相关论文
共 80 条
[1]   Genomic correlates of clinical outcome in advanced prostate cancer [J].
Abida, Wassim ;
Cyrta, Joanna ;
Heller, Glenn ;
Prandi, Davide ;
Armenia, Joshua ;
Coleman, Ilsa ;
Cieslik, Marcin ;
Benelli, Matteo ;
Robinson, Dan ;
Van Allen, Eliezer M. ;
Sboner, Andrea ;
Fedrizzi, Tarcisio ;
Mosquera, Juan Miguel ;
Robinson, Brian D. ;
De Sarkar, Navonil ;
Kunju, Lakshmi P. ;
Tomlins, Scott ;
Wu, Yi Mi ;
Rodrigues, Daniel Nava ;
Loda, Massimo ;
Gopalan, Anuradha ;
Reuter, Victor E. ;
Pritchard, Colin C. ;
Mateo, Joaquin ;
Bianchini, Diletta ;
Miranda, Susana ;
Carreira, Suzanne ;
Rescigno, Pasquale ;
Filipenko, Julie ;
Vinson, Jacob ;
Montgomery, Robert B. ;
Beltran, Himisha ;
Heath, Elisabeth I. ;
Scher, Howard I. ;
Kantoff, Philip W. ;
Taplin, Mary-Ellen ;
Schultz, Nikolaus ;
deBono, Johann S. ;
Demichelis, Francesca ;
Nelson, Peter S. ;
Rubin, Mark A. ;
Chinnaiyan, Arul M. ;
Sawyers, Charles L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (23) :11428-11436
[2]  
Agarap A. F., 2018, arXiv
[3]   Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late Radiation-Induced Subcutaneous Fibrosis [J].
Avanzo, Michele ;
Pirrone, Giovanni ;
Vinante, Lorenzo ;
Caroli, Angela ;
Stancanello, Joseph ;
Drigo, Annalisa ;
Massarut, Samuele ;
Mileto, Mario ;
Urbani, Martina ;
Trovo, Marco ;
el Naqa, Issam ;
De Paoli, Antonino ;
Sartor, Giovanna .
FRONTIERS IN ONCOLOGY, 2020, 10
[4]   Clinical Natural Language Processing for Radiation Oncology: A Review and Practical Primer [J].
Bitterman, Danielle S. ;
Miller, Timothy A. ;
Mak, Raymond H. ;
Savova, Guergana K. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 110 (03) :641-655
[5]   Health Information Blocking: Responses Under the 21st Century Cures Act [J].
Black, Jennifer R. ;
Hulkower, Rachel L. ;
Ramanathan, Tara .
PUBLIC HEALTH REPORTS, 2018, 133 (05) :610-613
[6]   SMOTE for high-dimensional class-imbalanced data [J].
Blagus, Rok ;
Lusa, Lara .
BMC BIOINFORMATICS, 2013, 14
[7]   Model-Based Selection for Proton Therapy in Breast Cancer: Development of the National Indication Protocol for Proton Therapy and First Clinical Experiences [J].
Boersma, L. J. ;
Sattler, M. G. A. ;
Maduro, J. H. ;
Bijker, N. ;
Essers, M. ;
van Gestel, C. M. J. ;
Klaver, Y. L. B. ;
Petoukhova, A. L. ;
Rodrigues, M. F. ;
Russell, N. S. ;
van der Schaaf, A. ;
Verhoeven, K. ;
van Vulpen, M. ;
Schuit, E. ;
Langendijk, J. A. .
CLINICAL ONCOLOGY, 2022, 34 (04) :247-257
[8]   Tumor radiomic heterogeneity: Multiparametric functional imaging to characterize variability and predict response following cervical cancer radiation therapy [J].
Bowen, Stephen R. ;
Yuh, William T. C. ;
Hippe, Daniel S. ;
Wu, Wei ;
Partridge, Savannah C. ;
Elias, Saba ;
Jia, Guang ;
Huang, Zhibin ;
Sandison, George A. ;
Nelson, Dennis ;
Knopp, Michael V. ;
Lo, Simon S. ;
Kinahan, Paul E. ;
Mayr, Nina A. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (05) :1388-1396
[9]   Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy [J].
Chen, Jiawei ;
Chen, Haibin ;
Zhong, Zichun ;
Wang, Zhuoyu ;
Hrycushko, Brian ;
Zhou, Linghong ;
Jiang, Steve ;
Albuquerque, Kevin ;
Gu, Xuejun ;
Zhen, Xin .
RADIATION ONCOLOGY, 2018, 13
[10]   Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer [J].
Chen, Liyuan ;
Zhou, Zhiguo ;
Sher, David ;
Zhang, Qiongwen ;
Shah, Jennifer ;
Nhat-Long Pham ;
Jiang, Steve ;
Wang, Jing .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (07)