Processing of snoRNAs as a new source of regulatory non-coding RNAs

被引:120
作者
Falaleeva, Marina [1 ]
Stamm, Stefan [1 ]
机构
[1] Univ Kentucky, Coll Med, Dept Mol & Cellular Biochem, Lexington, KY USA
关键词
gene expression; regulatory RNA; snoRNA; SMALL-NUCLEOLAR RNAS; BOX C/D SNORNAS; 2'-O-RIBOSE METHYLATION; SMALL NUCLEAR; RIBOSE METHYLATION; GENE-EXPRESSION; IDENTIFICATION; BIOGENESIS; H/ACA; PSEUDOURIDYLATION;
D O I
10.1002/bies.201200117
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent experimental evidence suggests that most of the genome is transcribed into non-coding RNAs. The initial transcripts undergo further processing generating shorter, metabolically stable RNAs with diverse functions. Small nucleolar RNAs (snoRNAs) are non-coding RNAs that modify rRNAs, tRNAs, and snRNAs that were considered stable. We review evidence that snoRNAs undergo further processing. High-throughput sequencing and RNase protection experiments showed widespread expression of snoRNA fragments, known as snoRNA-derived RNAs (sdRNAs). Some sdRNAs resemble miRNAs, these can associate with argonaute proteins and influence translation. Other sdRNAs are longer, form complexes with hnRNPs and influence gene expression. C/D box snoRNA fragmentation patterns are conserved across multiple cell types, suggesting a processing event, rather than degradation. The loss of expression from genetic loci that generate canonical snoRNAs and processed snoRNAs results in diseases, such as Prader-Willi Syndrome, indicating possible physiological roles for processed snoRNAs. We propose that processed snoRNAs acquire new roles in gene expression and represent a new class of regulatory RNAs distinct from canonical snoRNAs. Also watch the Video Abstract the same we have already done in issue 10/12 http://onlinelibrary.wiley.com/doi/10.1002/bies.201200049/abstract)
引用
收藏
页码:46 / 54
页数:9
相关论文
共 86 条
[1]   The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box C/D snoRNAs [J].
Bortolin-Cavaille, Marie-Line ;
Cavaille, Jerome .
NUCLEIC ACIDS RESEARCH, 2012, 40 (14) :6800-6807
[2]   Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs [J].
Brameier, Markus ;
Herwig, Astrid ;
Reinhardt, Richard ;
Walter, Lutz ;
Gruber, Jens .
NUCLEIC ACIDS RESEARCH, 2011, 39 (02) :675-686
[3]   Intronic noncoding RNAs and splicing [J].
Brown, John W. S. ;
Marshall, David F. ;
Echeverria, Manuel .
TRENDS IN PLANT SCIENCE, 2008, 13 (07) :335-342
[4]   Dicer independent small RNAs associate with telomeric heterochromatin [J].
Cao, Fang ;
Li, Xiangzhi ;
Hiew, Samantha ;
Brady, Hugh ;
Liu, Yifan ;
Dou, Yali .
RNA, 2009, 15 (07) :1274-1281
[5]   A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres [J].
Carone, Dawn M. ;
Longo, Mark S. ;
Ferreri, Gianni C. ;
Hall, Laura ;
Harris, Melissa ;
Shook, Nicole ;
Bulazel, Kira V. ;
Carone, Benjamin R. ;
Obergfell, Craig ;
O'Neill, Michael J. ;
O'Neill, Rachel J. .
CHROMOSOMA, 2009, 118 (01) :113-125
[6]   Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization [J].
Cavaillé, J ;
Buiting, K ;
Kiefmann, M ;
Lalande, M ;
Brannan, CI ;
Horsthemke, B ;
Bachellerie, JP ;
Brosius, J ;
Hüttenhofer, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14311-14316
[7]   The Reality of Pervasive Transcription [J].
Clark, Michael B. ;
Amaral, Paulo P. ;
Schlesinger, Felix J. ;
Dinger, Marcel E. ;
Taft, Ryan J. ;
Rinn, John L. ;
Ponting, Chris P. ;
Stadler, Peter F. ;
Morris, Kevin V. ;
Morillon, Antonin ;
Rozowsky, Joel S. ;
Gerstein, Mark B. ;
Wahlestedt, Claes ;
Hayashizaki, Yoshihide ;
Carninci, Piero ;
Gingeras, Thomas R. ;
Mattick, John S. .
PLOS BIOLOGY, 2011, 9 (07)
[8]   Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp [J].
d'Orval, BC ;
Bortolin, ML ;
Gaspin, C ;
Bachellerie, JP .
NUCLEIC ACIDS RESEARCH, 2001, 29 (22) :4518-4529
[9]   SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer [J].
Dong, Xue-Yuan ;
Rodriguez, Carmen ;
Guo, Peng ;
Sun, Xiaodong ;
Talbot, Jeffrey T. ;
Zhou, Wei ;
Petros, John ;
Li, Qunna ;
Vessella, Robert L. ;
Kibel, Adam S. ;
Stevens, Victoria L. ;
Calle, Eugenia E. ;
Dong, Jin-Tang .
HUMAN MOLECULAR GENETICS, 2008, 17 (07) :1031-1042
[10]   Implication of snoRNA U50 in human breast cancer [J].
Dong, Xue-Yuan ;
Guo, Peng ;
Boyd, Jeff ;
Sun, Xiaodong ;
Li, Qunna ;
Zhou, Wei ;
Dong, Jin-Tang .
JOURNAL OF GENETICS AND GENOMICS, 2009, 36 (08) :447-454