Label Efficient Semi-Supervised Learning via Graph Filtering

被引:115
作者
Li, Qimai [1 ]
Wu, Xiao-Ming [1 ]
Liu, Han [1 ]
Zhang, Xiaotong [1 ]
Guan, Zhichao [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Hong Kong, Peoples R China
[2] Zhejiang Univ, Hangzhou, Peoples R China
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
CLASSIFICATION;
D O I
10.1109/CVPR.2019.00981
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-based methods have been demonstrated as one of the most effective approaches for semi-supervised learning, as they can exploit the connectivity patterns between labeled and unlabeled data samples to improve learning performance. However, existing graph-based methods either are limited in their ability to jointly model graph structures and data features, such as the classical label propagation methods, or require a considerable amount of labeled data for training and validation due to high model complexity, such as the recent neural-network-based methods. In this paper, we address label efficient semi-supervised learning from a graph filtering perspective. Specifically, we propose a graph filtering framework that injects graph similarity into data features by taking them as signals on the graph and applying a low-pass graph filter to extract useful data representations for classification, where label efficiency can be achieved by conveniently adjusting the strength of the graph filter. Interestingly, this framework unifies two seemingly very different methods label propagation and graph convolutional networks. Revisiting them under the graph filtering framework leads to new insights that improve their modeling capabilities and reduce model complexity. Experiments on various semi-supervised classification tasks on four citation networks and one knowledge graph and one semi-supervised regression task for zero-shot image recognition validate our findings and proposals.
引用
收藏
页码:9574 / 9583
页数:10
相关论文
共 65 条
[1]  
[Anonymous], 2004, NIPS
[2]  
[Anonymous], 2007, UAI 2007, Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence
[3]  
[Anonymous], 2005, P INT WORKSH ART INT
[4]  
[Anonymous], 2006, IEEE T NEURAL NETWOR
[5]  
[Anonymous], ARXIV181111103
[6]  
[Anonymous], 2004, P 21 INT C MACH LEAR
[7]  
[Anonymous], 2003, Advances in Neural Information Processing Systems
[8]  
[Anonymous], 2014, 2 INT C LEARNING REP
[9]  
[Anonymous], 2018, ARXIV180511724
[10]  
[Anonymous], 2018, Graph partition neural networks for semi-supervised classification