TATE PROPERTIES, POLYNOMIAL-COUNT VARIETIES, AND MONODROMY OF HYPERPLANE ARRANGEMENTS

被引:10
作者
Dimca, Alexandru [1 ,2 ]
机构
[1] Univ Nice Sophia Antipolis, UMR CNRS 7351, Inst Univ France, F-06108 Nice 02, France
[2] Univ Nice Sophia Antipolis, UMR CNRS 7351, Lab JA Dieudonne, F-06108 Nice 02, France
关键词
MILNOR FIBERS; COHOMOLOGY; COMPLEMENTS; EIGENVALUES;
D O I
10.1215/00277630-1548502
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The order of the Milnor fiber monodromy operator of a central hyperplane arrangement is shown to be combinatorially determined. In particular, a necessary and sufficient condition for the triviality of this monodromy operator is given. It is known that the complement of a complex hyperplane arrangement is cohomologically Tate and, if the arrangement is defined over Q, has polynomial count. We show that these properties hold for the corresponding Milnor fibers if the monodromy is trivial. We construct a hyperplane arrangement defined over Q, whose Milnor fiber has a nontrivial monodromy operator, is cohomologically Tate, and has no polynomial count. Such examples are shown not to exist in low dimensions.
引用
收藏
页码:75 / 97
页数:23
相关论文
共 30 条
[1]   Jumping coefficients and spectrum of a hyperplane arrangement [J].
Budur, Nero ;
Saito, Morihiko .
MATHEMATISCHE ANNALEN, 2010, 347 (03) :545-579
[2]   Torsion in Milnor fiber homology [J].
Cohen, Daniel C. ;
Denham, Graham ;
Suciu, Alexander I. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2003, 3 (01) :511-535
[3]   ON MILNOR FIBRATIONS OF ARRANGEMENTS [J].
COHEN, DC ;
SUCIU, AI .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 :105-119
[4]   REAL HOMOTOPY THEORY OF KAHLER MANIFOLDS [J].
DELIGNE, P ;
GRIFFITHS, P ;
MORGAN, J ;
SULLIVAN, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :245-274
[5]  
DIMCA A, 1997, AUSTR MATH SOC LECT, V9, P161
[6]  
Dimca A., 1992, SINGULARITIES TOPOLO
[7]  
Dimca A., ARXIV10063462MATHAG
[8]  
Dimca A., 2004, UNIVERSITEX
[9]  
Dimca A, 2011, ANN SCUOLA NORM-SCI, V10, P253
[10]   Quasi-Kahler groups, 3-manifold groups, and formality [J].
Dimca, Alexandru ;
Papadima, Stefan ;
Suciu, Alexander I. .
MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) :169-186