MFAS: Multimodal Fusion Architecture Search

被引:145
作者
Perez-Rua, Juan-Manuel [1 ,3 ]
Vielzeuf, Valentin [1 ,2 ]
Pateux, Stephane [1 ]
Baccouche, Moez [1 ]
Jurie, Frederic [2 ]
机构
[1] Orange Labs, Cesson Sevigne, France
[2] Univ Caen Normandie, Caen, France
[3] Samsung AI Ctr, Cambridge, England
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00713
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We tackle the problem of finding good architectures for multimodal classification problems. We propose a novel and generic search space that spans a large number of possible fusion architectures. In order to find an optimal architecture for a given dataset in the proposed search space, we leverage an efficient sequential model-based exploration approach that is tailored for the problem. We demonstrate the value of posing multimodal fusion as a neural architecture search problem by extensive experimentation on a toy dataset and two other real multimodal datasets. We discover fusion architectures that exhibit state-of-the-art performance for problems with different domain and dataset size, including the NTU RGB+D dataset, the largest multimodal action recognition dataset available.
引用
收藏
页码:6959 / 6968
页数:10
相关论文
共 50 条
[1]  
Amer M. R., 2018, IJCV
[2]  
[Anonymous], 2012, CVPR
[3]  
[Anonymous], 1990, NIPS
[4]  
[Anonymous], PROC CVPR IEEE
[5]  
[Anonymous], 2013, ICML
[6]  
[Anonymous], 2018, ARXIV180406055
[7]  
[Anonymous], 2018, AAAI
[8]  
[Anonymous], 2016, LECT NOTES COMPUT SC, DOI DOI 10.1007/978-3-319-46484-8_29
[9]  
[Anonymous], 2018, CVPR
[10]  
[Anonymous], 2016, P C ASS MACH TRANSL