Universal pattern generation by cellular automata

被引:19
作者
Kari, Jarkko [1 ]
机构
[1] Univ Turku, Dept Math, FI-20014 Turku, Finland
基金
芬兰科学院;
关键词
Cellular automata; Universal constructor; Pattern generation; Collatz problem;
D O I
10.1016/j.tcs.2011.12.037
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We construct a reversible, one-dimensional cellular automaton that has the property that a finite initial configuration generates all finite patterns over its state alphabet. We also conjecture that a related cellular automaton satisfies the stronger property that every finite pattern gets generated in every position, so that the forward orbit of the finite initial configuration is dense. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 184
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 2002, A New Kind of Science
[2]   Dynamical properties of expansive one-sided cellular automata [J].
Blanchard, F ;
Maass, A .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 99 (1) :149-174
[3]  
Cloney T., 1987, Complex Systems, V1, P349
[4]  
Furstenberg H., 1967, THEORY COMPUTING SYS, V1, P1
[5]   Theory of cellular automata: A survey [J].
Kari, J .
THEORETICAL COMPUTER SCIENCE, 2005, 334 (1-3) :3-33
[6]   THE 3X+1 PROBLEM AND ITS GENERALIZATIONS [J].
LAGARIAS, JC .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (01) :3-23
[7]   X2 AND X3 INVARIANT-MEASURES AND ENTROPY [J].
RUDOLPH, DJ .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 :395-406
[8]  
Ulam S. M., 1960, A Collection of the Mathematical Problems
[9]  
Von Neumann J., 1966, Theory of Self-Replicating Automata
[10]  
Weyl H., 1916, Math. Ann., V77, P313