Monte Carlo modeling of bulk Gd

被引:0
作者
Stanica, N. [1 ]
Chesler, P. [1 ]
Hornoiu, C. [1 ]
Radu, C. [2 ]
Suh, Soong-Hyuck [3 ]
机构
[1] Inst Phys Chem, Coordinat Chem, Splaiul Independentei 202, Bucharest 060021, Romania
[2] Lake Shore Cryotron Inc, Westerville, OH 43082 USA
[3] Keimyung Univ, Dept Chem Engn, Daegu 42601, South Korea
关键词
Hexagonal close-packed structure; Indirect Ruderman-Kittel-Kasuya-Yosida 4f-4f exchange; Ising Hamiltonian; Spin reorientation temperature; Magnetic refrigeration material; Critical exponents; MAGNETIC-BEHAVIOR; SIMULATION; TEMPERATURE; EXPONENTS; 1D; 2D;
D O I
10.1016/j.jpcs.2020.109571
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To understand the interplay between lattice structure and spin degrees of freedom, a bulk-Gd lattice as a hexagonal close-packed structure was generated and populated with paramagnetic Gd3+ ions with random projections (M-S(Gd)(i), i = 1, 245, or 443). Isotropic interactions of every site with their 12 nearest neighbors were taken into account. On the basis of the Monte Carlo Metropolis algorithm, the variation with temperature and magnetic field strength was obtained for the following physical quantities: magnetization M(T,H), the product of the magnetic susceptibility and temperature chi(mol)*T, magnetic specific heat C(T,H), entropy variation Delta S(T,Delta H), and statistics of spin projections M-S(Gd)(i,T). We also show the resulting interatomic exchange J(Gd)(-)(Gd), the reorientation of the spin temperature, the behavior of the Curie temperature versus a magnetic field, and magnetocaloric properties of bulk Gd.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Monte Carlo methods
    Kroese, Dirk P.
    Rubinstein, Reuven Y.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (01) : 48 - 58
  • [42] Dosimetric Modeling of Mammography Using the Monte Carlo Code PENELOPE and Its Validation
    Tse, Jason
    Fulton, Roger
    McLean, Donald
    BREAST IMAGING, IWDM 2016, 2016, 9699 : 160 - 166
  • [43] Monte Carlo modeling of binder-Less spray agglomeration in fluidized beds
    Rieck, Christian
    Schmidt, Martin
    Bueck, Andreas
    Tsotsas, Evangelos
    AICHE JOURNAL, 2018, 64 (10) : 3582 - 3594
  • [44] Modeling of the polarized light scattering in biotissues by Monte Carlo and photon tracing methods
    Yermolenko, Sergey
    Gruia, Ion
    Ivashko, Pavlo
    Prydij, Olexander
    ADVANCED TOPICS IN OPTOELECTRONICS, MICROELECTRONICS, AND NANOTECHNOLOGIES VI, 2012, 8411
  • [45] SCOUT: A Fast Monte-Carlo Modeling Tool of Scintillation Camera Output
    Hunter, William C. J.
    Barrett, Harrison H.
    Lewellen, Thomas K.
    Miyaoka, Robert S.
    Muzi, John P.
    Li, Xiaoli
    McDougald, Wendy
    MacDonald, Lawrence R.
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 1203 - 1208
  • [46] Kinetic Monte Carlo approach to modeling thermal decay in perpendicular recording media
    Fal, T. J.
    Mercer, J. I.
    Leblanc, M. D.
    Whitehead, J. P.
    Plumer, M. L.
    van Ek, J.
    PHYSICAL REVIEW B, 2013, 87 (06):
  • [47] Modeling of Branching Distributions in Butyl Acrylate Polymerization Applying Monte Carlo Methods
    Drache, Marco
    Hosemann, Benjamin
    Laba, Tetyana
    Beuermann, Sabine
    MACROMOLECULAR THEORY AND SIMULATIONS, 2015, 24 (04) : 301 - 310
  • [48] Modeling the Migration of Platinum Nanoparticles on Surfaces Using a Kinetic Monte Carlo Approach
    Li, Lin
    Plessow, Philipp N.
    Rieger, Michael
    Sauer, Simeon
    Sanchez-Carrera, Roel S.
    Schaefer, Ansgar
    Abild-Pedersen, Frank
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (08) : 4261 - 4269
  • [49] Modeling SWCNT Bandgap and Effective Mass Variation Using a Monte Carlo Approach
    El Shabrawy, Karim
    Maharatna, Koushik
    Bagnall, Darren
    Al-Hashimi, Bashir M.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010, 9 (02) : 184 - 193
  • [50] 3D Monte Carlo modeling of the SEM: Are there applications to photomask metrology?
    Villarrubia, J. S.
    Vladar, A. E.
    Postek, M. T.
    SCANNING MICROSCOPIES 2014, 2014, 9236