Monte Carlo modeling of bulk Gd

被引:0
|
作者
Stanica, N. [1 ]
Chesler, P. [1 ]
Hornoiu, C. [1 ]
Radu, C. [2 ]
Suh, Soong-Hyuck [3 ]
机构
[1] Inst Phys Chem, Coordinat Chem, Splaiul Independentei 202, Bucharest 060021, Romania
[2] Lake Shore Cryotron Inc, Westerville, OH 43082 USA
[3] Keimyung Univ, Dept Chem Engn, Daegu 42601, South Korea
关键词
Hexagonal close-packed structure; Indirect Ruderman-Kittel-Kasuya-Yosida 4f-4f exchange; Ising Hamiltonian; Spin reorientation temperature; Magnetic refrigeration material; Critical exponents; MAGNETIC-BEHAVIOR; SIMULATION; TEMPERATURE; EXPONENTS; 1D; 2D;
D O I
10.1016/j.jpcs.2020.109571
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To understand the interplay between lattice structure and spin degrees of freedom, a bulk-Gd lattice as a hexagonal close-packed structure was generated and populated with paramagnetic Gd3+ ions with random projections (M-S(Gd)(i), i = 1, 245, or 443). Isotropic interactions of every site with their 12 nearest neighbors were taken into account. On the basis of the Monte Carlo Metropolis algorithm, the variation with temperature and magnetic field strength was obtained for the following physical quantities: magnetization M(T,H), the product of the magnetic susceptibility and temperature chi(mol)*T, magnetic specific heat C(T,H), entropy variation Delta S(T,Delta H), and statistics of spin projections M-S(Gd)(i,T). We also show the resulting interatomic exchange J(Gd)(-)(Gd), the reorientation of the spin temperature, the behavior of the Curie temperature versus a magnetic field, and magnetocaloric properties of bulk Gd.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Monte Carlo study of the bulk magnetic properties of magnetite
    Mazo-Zuluaga, J
    Restrepo, J
    PHYSICA B-CONDENSED MATTER, 2004, 354 (1-4) : 20 - 26
  • [2] A Monte Carlo evaluation of growth mixture modeling
    Shader, Tiffany M.
    Beauchaine, Theodore P.
    DEVELOPMENT AND PSYCHOPATHOLOGY, 2022, 34 (04) : 1604 - 1617
  • [3] STOCHASTIC MODELING WITH MONTE CARLO OF OBESITY POPULATION
    Gonzalez-Parra, Gilberto
    Arenas, Abraham J.
    Santonja, F. -J.
    JOURNAL OF BIOLOGICAL SYSTEMS, 2010, 18 (01) : 93 - 108
  • [4] Kinetic Monte Carlo modeling of dark and illuminated current-voltage characteristics of bulk heterojunction solar cells
    Baidya, Prabin Man
    Bayat, Khadijeh
    Biesecker, Matt
    Baroughi, Mahdi Farrokh
    APPLIED PHYSICS LETTERS, 2013, 103 (06)
  • [5] Modeling Erratic Bits Temperature Dependence for Monte Carlo Simulation of Flash Arrays
    Zambelli, Cristian
    Koebernik, Gert
    Ullmann, Rudolf
    Bauer, Matthias
    Tempel, Georg
    Olivo, Piero
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (03) : 390 - 392
  • [6] Ensemble Monte Carlo modeling of quantum cascade detectors
    Jirauschek, Christian
    Popp, Johannes
    Haider, Michael
    Franckie, Martin
    Faist, Jerome
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (20)
  • [7] Approaches for Streamlining Performance Control by Monte Carlo Modeling
    Cipu, Elena Corina
    Cipu, Ruxandra Ioana
    Michnea, Stefania Maria
    MATHEMATICS, 2024, 12 (07)
  • [8] Monte Carlo modeling of angiographic optical coherence tomography
    Hartinger, Alzbeta E.
    Nam, Ahhyun S.
    Chico-Calero, Isabel
    Vakoc, Benjamin J.
    BIOMEDICAL OPTICS EXPRESS, 2014, 5 (12): : 4338 - 4349
  • [9] Monte Carlo modeling of the scatter radiation doses in IR
    Mah, Eugene
    He, Wenjun
    Huda, Walter
    Yao, Hai
    Selby, Bayne
    MEDICAL IMAGING 2011: PHYSICS OF MEDICAL IMAGING, 2011, 7961
  • [10] Monte Carlo modeling of atomic clusters in mesoscopic range
    Ratner, M. A.
    Yanovsky, V. V.
    FUNCTIONAL MATERIALS, 2024, 31 (02): : 225 - 231