AN ADAPTIVE IMMERSED FINITE ELEMENT METHOD WITH ARBITRARY LAGRANGIAN-EULERIAN SCHEME FOR PARABOLIC EQUATIONS IN TIME VARIABLE DOMAINS

被引:0
作者
Chen, Zhiming [1 ]
Wu, Zedong [2 ]
Xiao, Yuanming [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100190, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
Immersed finite element; adaptive; a posteriori error estimate; time variable domain; ALGORITHM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first propose an adaptive immersed finite element method based on the a posteriori error estimate for solving elliptic equations with non-homogeneous boundary conditions in general Lipschitz domains. The underlying finite element mesh need not fit the boundary of the domain. Optimal a priori error estimate of the proposed immersed finite element method is proved. The immersed finite element method is then used to solve parabolic problems in time variable domains together with an arbitrary Lagrangian-Eulerian (ALE) time discretization scheme. An a posteriori error estimate for the fully discrete immersed finite element method is derived which can be used to adaptively update the time step sizes and finite element meshes at each time step. Numerical experiments are reported to support the theoretical results.
引用
收藏
页码:567 / 591
页数:25
相关论文
共 8 条
  • [1] On the Lagrangian-Eulerian coupling in the immersed finite element/difference method
    Lee, Jae H.
    Griffith, Boyce E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 457
  • [2] Adaptive finite element method for parabolic equations with Dirac measure
    Gong, Wei
    Liu, Huipo
    Yan, Ningning
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 328 : 217 - 241
  • [3] An adaptive immersed finite element method for linear parabolic interface problems with nonzero flux jump
    Ray, Tanushree
    Sinha, Rajen Kumar
    CALCOLO, 2023, 60 (02)
  • [4] A two-grid immersed finite element method with the Crank-Nicolson time scheme for semilinear parabolic interface problems
    Yi, Huaming
    Chen, Yanping
    Wang, Yang
    Huang, Yunqing
    APPLIED NUMERICAL MATHEMATICS, 2023, 189 : 1 - 22
  • [5] Prediction of extrudate swell in polymer melt extrusion using an Arbitrary Lagrangian Eulerian (ALE) based finite element method
    Ganvir, Vivek
    Lele, Ashish
    Thaokar, Rochish
    Gautham, B. R.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2009, 156 (1-2) : 21 - 28
  • [6] A posteriori error estimation and adaptive mesh refinement for parabolic interface problems using non-conforming immersed finite element method
    Ray, Tanushree
    Sinha, Rajen Kumar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 419
  • [7] A convergent time-space adaptive dG(s) finite element method for parabolic problems motivated by equal error distribution
    Gaspoz, Fernando D.
    Siebert, Kunibert
    Kreuzer, Christian
    Ziegler, Daniel A.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (02) : 650 - 686
  • [8] A hybrid finite-element/finite-difference method with an implicit-explicit time-stepping scheme for Maxwell's equations
    Zhu, B.
    Chen, J.
    Zhong, W.
    Liu, Q. H.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (5-6) : 607 - 620