An approach of the minimal model program for horospherical varieties via moment polytopes

被引:6
作者
Pasquier, Boris [1 ]
机构
[1] Univ Montpellier 2, F-34095 Montpellier, France
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2015年 / 708卷
关键词
D O I
10.1515/crelle-2013-0103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the minimal model program in the family of Q-Gorenstein projective horospherical varieties, by studying a family of polytopes defined from the moment polytope of a Cartier divisor of the variety we begin with. In particular, we generalize the results on MMP for toric varieties due to M. Reid, and we complete the results on MMP for spherical varieties due to M. Brion in the case of horospherical varieties.
引用
收藏
页码:173 / 212
页数:40
相关论文
共 13 条
[1]  
[Anonymous], 1990, SPRINGER SER SOVIET
[2]  
[Anonymous], 1991, P HYDERABAD C ALGEBR
[3]  
Bourbaki N., 1975, ACTUALITES SCI INDUS, V1364
[4]  
Brion M, 2005, TRENDS MATH, P33, DOI 10.1007/3-7643-7342-3_2
[5]   PICARD GROUP AND EIGENVALUES OF SPHERICAL MANIFOLDS [J].
BRION, M .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (02) :397-424
[6]   SPHERICAL VARIETIES AND MORI THEORY [J].
BRION, M .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (02) :369-404
[7]  
Fulton W., 1993, H ROEVER LECT GEOMET, V131
[8]  
Matsuki K., 2002, Introduction to the Mori program
[9]  
Oda T., 1988, ERGEBNISSE MATH IHRE, V3, P15
[10]  
Pasquier B, 2006, THESIS U J FOURIER G