Key Role of Oxygen-Vacancy Electromigration in the Memristive Response of Ferroelectric Devices

被引:23
作者
Ferreyra, C. [1 ,2 ]
Rengifo, M. [1 ,2 ]
Sanchez, M. J. [1 ,3 ,4 ]
Everhardt, A. S. [5 ]
Noheda, B. [5 ]
Rubi, D. [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, CNEA, Inst Nanociencia & Nanotecnol INN, Buenos Aires, DF, Argentina
[2] Ctr Atom Constituyentes, Av Gral Paz 1499, RA-1650 San Martin, Buenos Aires, Argentina
[3] Univ Nacl Cuyo, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[4] Univ Nacl Cuyo, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[5] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
来源
PHYSICAL REVIEW APPLIED | 2020年 / 14卷 / 04期
基金
欧盟地平线“2020”;
关键词
FREQUENCY-DEPENDENCE; COERCIVE FIELD; RESISTANCE;
D O I
10.1103/PhysRevApplied.14.044045
中图分类号
O59 [应用物理学];
学科分类号
摘要
Ferroelectric memristors are intensively studied due to their potential implementation in data storage and processing devices. In this work we show that the memristive behavior of metal-ferroelectric-oxide-metal devices relies on the competition of two effects: the modulation of metal-ferroelectric interface barriers by the switchable ferroelectric polarization and the electromigration of oxygen vacancies, with the depolarizing field playing a fundamental role in the latter. We simulate our experimental results with a phenomenological model that includes both effects and we reproduce several nontrivial features of the electrical response, including resistance relaxations observed after external poling. Besides providing insight into the underlying physics of these complex devices, our work suggests that it is possible to combine nonvolatile and volatile resistive changes in single ferroelectric memristors, an issue that could be useful for the development of neuromorphic devices.
引用
收藏
页数:12
相关论文
共 63 条
  • [1] [Anonymous], 2012, Semiconductor Devices: Physics and Technology
  • [2] FERROELECTRIC SCHOTTKY DIODE
    BLOM, PWM
    WOLF, RM
    CILLESSEN, JFM
    KRIJN, MPCM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (15) : 2107 - 2110
  • [3] Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
  • [4] Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching
    Chen, Aiping
    Zhang, Wenrui
    Dedon, Liv R.
    Chen, Di
    Khatkhatay, Fauzia
    MacManus-Driscoll, Judith L.
    Wang, Haiyan
    Yarotski, Dmitry
    Chen, Jun
    Gao, Xingsun
    Martin, Lane W.
    Roelofs, Andreas
    Jia, Quanxi
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (43)
  • [5] Formation and modification of Schottky barriers at the PZT/Pt interface
    Chen, Feng
    Schafranek, Robert
    Wu, Wenbin
    Klein, Andreas
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (21)
  • [6] Direct resistance profile for an electrical pulse induced resistance change device
    Chen, X
    Wu, NJ
    Strozier, J
    Ignatiev, A
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (23) : 1 - 3
  • [7] Electrical characterization and reliability of lanthanum doped PZT thin films capacitors
    Chentir, M. T.
    Bouyssou, E.
    Ventura, L.
    Guegan, G.
    Anceau, C.
    [J]. INTEGRATED FERROELECTRICS, 2008, 96 (01) : 75 - 81
  • [8] Depolarization corrections to the coercive field in thin-film ferroelectrics
    Dawber, M
    Chandra, P
    Littlewood, PB
    Scott, JF
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (24) : L393 - L398
  • [9] A method of determining the charge trapped at the interfaces of a metal/ferroelectric/metal thin-film structure
    Delimova, L.
    Grekhov, I.
    Mashovets, D.
    Shin, S.
    Koo, J. -M.
    Kim, S. -P.
    Park, Y.
    [J]. PHYSICS OF THE SOLID STATE, 2006, 48 (06) : 1182 - 1185
  • [10] NOVEL FATIGUE-FREE LAYERED STRUCTURE FERROELECTRIC THIN-FILMS
    DESU, SB
    VIJAY, DP
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1995, 32 (1-2): : 75 - 81