Demand Response Management in Smart Grids With Heterogeneous Consumer Preferences

被引:66
作者
Eksin, Ceyhun [1 ,2 ,3 ]
Delic, Hakan [4 ]
Ribeiro, Alejandro [1 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[2] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Dept Biol, Atlanta, GA 30332 USA
[4] Bogazici Univ, Dept Elect & Elect Engn, Wireless Commun Lab, TR-34342 Bebek, Istanbul, Turkey
基金
美国国家科学基金会;
关键词
Demand response management (DRM); game theory; renewable energy; SIDE MANAGEMENT; INFORMATION; EQUILIBRIUM; INTEGRATION;
D O I
10.1109/TSG.2015.2422711
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Consumer demand profiles and fluctuating renewable power generation are two main sources of uncertainty in matching demand and supply. This paper proposes a model of the electricity market that captures the uncertainties on both the operator and user sides. The system operator (SO) implements a temporal linear pricing strategy that depends on real-time demand and renewable generation in the considered period combining real-time pricing with time-of-use pricing. The announced pricing strategy sets up a noncooperative game of incomplete information among the users with heterogeneous, but correlated consumption preferences. An explicit characterization of the optimal user behavior using the Bayesian Nash equilibrium solution concept is derived. This explicit characterization allows the SO to derive pricing policies that influence demand to serve practical objectives, such as minimizing peak-to-average ratio or attaining a desired rate of return. Numerical experiments show that the pricing policies yield close to optimal welfare values while improving these practical objectives.
引用
收藏
页码:3082 / 3094
页数:13
相关论文
共 28 条
[1]  
[Anonymous], 2013, P INT C FUT EN SYST
[2]   Demand-Side Management via Distributed Energy Generation and Storage Optimization [J].
Atzeni, Italo ;
Ordonez, Luis G. ;
Scutari, Gesualdo ;
Palomar, Daniel P. ;
Rodriguez Fonollosa, Javier .
IEEE TRANSACTIONS ON SMART GRID, 2013, 4 (02) :866-876
[3]   Achieving Optimality and Fairness in Autonomous Demand Response: Benchmarks and Billing Mechanisms [J].
Baharlouei, Zahra ;
Hashemi, Massoud ;
Narimani, Hamed ;
Mohsenian-Rad, Hamed .
IEEE TRANSACTIONS ON SMART GRID, 2013, 4 (02) :968-975
[4]  
Barreto C, 2013, IEEE DECIS CONTR P, P1828, DOI 10.1109/CDC.2013.6760148
[5]  
Borenstein S., 2007, RAND J ECON, V36, P469
[6]   INFORMATION GATHERING IN ORGANIZATIONS: EQUILIBRIUM, WELFARE, AND OPTIMAL NETWORK STRUCTURE [J].
Calvo-Armengol, Antoni ;
de Marti Beltran, Joan .
JOURNAL OF THE EUROPEAN ECONOMIC ASSOCIATION, 2009, 7 (01) :116-161
[7]   Smart meters for power grid: Challenges, issues, advantages and status [J].
Depuru, Soma Shekara Sreenadh Reddy ;
Wang, Lingfeng ;
Devabhaktuni, Vijay .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (06) :2736-2742
[8]   Bayesian Quadratic Network Game Filters [J].
Eksin, Ceyhun ;
Molavi, Pooya ;
Ribeiro, Alejandro ;
Jadbabaie, Ali .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (09) :2250-2264
[9]   A new optimization method: Big Bang Big Crunch [J].
Erol, OK ;
Eksin, I .
ADVANCES IN ENGINEERING SOFTWARE, 2006, 37 (02) :106-111
[10]  
Jiang LB, 2011, IEEE DECIS CONTR P, P4348, DOI 10.1109/CDC.2011.6161320