The Jensen functional equation in non-Archimedean normed spaces

被引:9
作者
Moslehian, Mohammad Sal [1 ,2 ,3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, Mashhad 91775, Iran
[2] Ferdowsi Univ Mashhad, CEAAS, Mashhad 91775, Iran
[3] BMRG, Mashhad 91775, Iran
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2009年 / 7卷 / 01期
关键词
Stability; Jensen functional equation; asymptotic behavior; non-Archimedean normed space; ULAM-RASSIAS STABILITY; MAPPINGS;
D O I
10.1155/2009/802032
中图分类号
学科分类号
摘要
We investigate the Hyers-Ulam-Rassias stability of the Jensen functional equation in non-Archimedean normed spaces and study its asymptotic behavior in two directions: bounded and unbounded Jensen differences. In particular, we show that a mapping f between non-Archimedean spaces with f (0) = 0 is additive if and only if parallel to f (x +y)/2 - f(x) + f (y)/2 parallel to -> 0 as max {parallel to x parallel to, parallel to y parallel to} -> infinity.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 1964, Introduction to p-adic Numbers and Valuation Theory
[2]  
[Anonymous], 2002, SPRINGER MONOGRAPHS
[3]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[4]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[5]  
Arriola LM, 2005, REAL ANAL EXCH, V31, P125
[6]  
Czerwik S, 2003, STABILITY FUNCTIONAL
[7]   On the stability of Jensen's functional equation on groups [J].
Faiziev, Valerii A. ;
Sahoo, Prasanna K. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (01) :31-48
[8]  
Hensel, 1897, DTSCH MATH VEREINIGU, V6, P83
[9]   On the asymptoticity aspect of Hyers-Ulam stability of mappings [J].
Hyers, DH ;
Isac, G ;
Rassias, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) :425-430
[10]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224