Blind paraunitary equalization

被引:3
作者
Icart, Sylvie [1 ]
Comon, Pierre [1 ]
Rota, Ludwig [2 ]
机构
[1] Univ Nice, CNRS, UMR 6070, Lab 13S, F-06903 Sophia Antipolis, France
[2] Orange Business Serv, Sophia Antipolis, France
关键词
Blind deconvolution; Blind equalization; Multiple-input/multiple-output (MIMO); High order statistics (HOS); Paraunitary filter; Pairwise cumulants; HIGHER-ORDER STATISTICS; DECONVOLUTION; SEPARATION; IDENTIFICATION; CONTRASTS; SYSTEMS; FACTORIZATION; CRITERIA; SIGNALS; NOISE;
D O I
10.1016/j.sigpro.2008.08.014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper a blind multiple-input/multiple-output (MIMO) space-time equalizer is described, dedicated to convolutive mixtures when observations have been pre-whitened, Filters preserving space-time whiteness are paraunitary; a parameterization of such filters with plane rotations is proposed. Theoretical developments then lead to a numerical algorithm that sweeps all pairs of delayed outputs. This algorithm involves the solution of a polynomial system in two unknowns, whose coefficients depend on the output cumulants. Simulations and performance of the numerical algorithm are reported. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:283 / 290
页数:8
相关论文
共 50 条
[21]   Blind Source Separation and Equalization Based on Support Vector Regression for MIMO Systems [J].
Sun, Chao ;
Yang, Ling ;
Du, Juan ;
Sun, Fenggang ;
Chen, Li ;
Xi, Haipeng ;
Du, Shenglei .
IEICE TRANSACTIONS ON COMMUNICATIONS, 2018, E101B (03) :698-708
[22]   Blind source separation and blind equalization algorithms for mechanical signal separation and identification [J].
Tse, PW ;
Zhang, JY ;
Wang, XJ .
JOURNAL OF VIBRATION AND CONTROL, 2006, 12 (04) :395-423
[23]   Performance of a blind equalization algorithm for Rayleigh and Rician channels [J].
Moussa, A. ;
Frikel, M. ;
Pouliquen, M. ;
Bedoui, S. ;
Abderrahim, K. ;
M'Saad, M. .
2016 17TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA'2016), 2016, :685-690
[24]   Constellation basis decomposition based blind equalization processing of four-dimensional modulation [J].
Li, Zhaoxi ;
Si, Yujuan ;
Hu, Guijun .
OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (11)
[25]   QUASI-NEWTON MULTIMODULUS BLIND EQUALIZATION ALGORITHM [J].
Paracha, Kashif N. ;
Zerguine, Azzedine .
2009 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2009), 2009, :151-+
[26]   RECURSIVE BLIND EQUALIZATION WITH AN OPTIMAL BOUNDING ELLIPSOID ALGORITHM [J].
Pouliquen, M. ;
Frikel, M. ;
Denoual, M. .
2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, :2240-2244
[27]   Blind Equalization Algorithm for Different Eigenvalue Spread Channels [J].
Sun, Yongjun ;
Wang, Fanli ;
Jia, Cuiyuan ;
Liu, Zujun .
WIRELESS PERSONAL COMMUNICATIONS, 2018, 101 (02) :1003-1018
[28]   Blind Equalization Method Based on Sparse Bayesian Learning [J].
Hwang, Kyuho ;
Choi, Sooyong .
IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (04) :315-318
[29]   An adaptive algorithm for blind MMSE equalization of SIMO channels [J].
Chen, Caiyun ;
Yu, Junshan .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2015, 6 (05) :597-602
[30]   A momentum fractional order multimodulus blind equalization algorithm [J].
Yang, Jiali ;
Zhang, Qiang ;
Luo, Yongjiang ;
Jiang, Kaiyu .
DIGITAL SIGNAL PROCESSING, 2022, 126