Genes responsible for powdery mildew resistance and improvement in wheat using molecular marker-assisted selection

被引:18
作者
Shah, Liaqat [1 ,2 ,3 ]
Rehman, Shamsur [3 ]
Ali, Asif [3 ]
Yahya, Muhammad [3 ]
Riaz, Muhammad Waheed [1 ,2 ,3 ]
Si, Hongqi [1 ,2 ,3 ,4 ]
Ma, Chuanxi [1 ,2 ,3 ,4 ]
Lu, Jie [1 ,2 ,3 ]
机构
[1] Anhui Agr Univ, Sch Agron, Hefei 230036, Anhui, Peoples R China
[2] Minist Agr, Key Lab Wheat Biol & Genet Improvement South Yell, Hefei 230036, Anhui, Peoples R China
[3] Anhui Agr Univ, Natl United Engn Lab Crop Stress Resistance Breed, Hefei 230036, Anhui, Peoples R China
[4] Anhui Key Lab Crop Biol, Hefei 230036, Anhui, Peoples R China
关键词
Resistance genes; Molecular markers; Gene location; Powdery mildew; ADULT-PLANT RESISTANCE; TRITICUM-AESTIVUM L; L. EM THELL; TURGIDUM VAR. DICOCCOIDES; RACE-SPECIFIC RESISTANCE; FUSARIUM HEAD BLIGHT; COMMON WHEAT; CHROMOSOMAL LOCATION; WILD EMMER; BREAD WHEAT;
D O I
10.1007/s41348-017-0132-6
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Plants have the capability to protect themselves from attacks by several types of fungal pathogens. Several powdery mildew resistance genes have been reported at different loci, and most of them have been originated from progenitors of wheat or wild accessions. Powdery mildew resistance is deliberated to be quantitative traits (QTLs), also considered as complex traits, because they are measured by several genes and are affected by fungal pathogens. Numerous researchers have been studied such traits in the past periods for the development of genetic markers, which could be used in several wheat breeding studies mainly encompassing simple sequence repeat, restriction fragment length polymorphism, random amplified polymorphic DNA, single nucleotide polymorphism, and amplified fragment length polymorphism. The discovery of molecular markers and related technologies, such as marker-assisted selection (MAS), has led to the appearance of a new genetic background in plant breeding. MAS would be exceedingly valuable in the cases of polygenic or quantitative disease resistance, in which the individual quantitative trait loci (QTL) would have minute effects on disease development. This review elaborately describes the availability of many molecular markers that recognize the locus of gene mapping for an understanding of the genetic background of disease resistance.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 126 条
[1]   Powdery Mildew Resistance Genes in Wheat: Identification and Genetic Analysis [J].
Alam, Md. Ashraful ;
Xue, Fei ;
Wang, Changyou ;
Ji, Wanquan .
JOURNAL OF MOLECULAR BIOLOGY RESEARCH, 2011, 1 (01) :20-39
[3]   Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat [J].
Blanco, Antonio ;
Gadaleta, A. ;
Cenci, A. ;
Carluccio, A. V. ;
Abdelbacki, A. M. M. ;
Simeone, R. .
THEORETICAL AND APPLIED GENETICS, 2008, 117 (01) :135-142
[4]   Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat [J].
Bougot, Y ;
Lemoine, J ;
Pavoine, MT ;
Barloy, D ;
Doussinault, G .
PLANT BREEDING, 2002, 121 (04) :325-329
[5]   Analysis of the breadwheat genome using whole-genome shotgun sequencing [J].
Brenchley, Rachel ;
Spannagl, Manuel ;
Pfeifer, Matthias ;
Barker, Gary L. A. ;
D'Amore, Rosalinda ;
Allen, Alexandra M. ;
McKenzie, Neil ;
Kramer, Melissa ;
Kerhornou, Arnaud ;
Bolser, Dan ;
Kay, Suzanne ;
Waite, Darren ;
Trick, Martin ;
Bancroft, Ian ;
Gu, Yong ;
Huo, Naxin ;
Luo, Ming-Cheng ;
Sehgal, Sunish ;
Gill, Bikram ;
Kianian, Sharyar ;
Anderson, Olin ;
Kersey, Paul ;
Dvorak, Jan ;
McCombie, W. Richard ;
Hall, Anthony ;
Mayer, Klaus F. X. ;
Edwards, Keith J. ;
Bevan, Michael W. ;
Hall, Neil .
NATURE, 2012, 491 (7426) :705-710
[6]   LINKAGE OF RESISTANCE TO ERYSIPHE GRAMINIS F SP TRITICI (PM3) AND HAIRY GLUME (HG) ON CHROMOSOME 1A OF WHEAT [J].
BRIGGLE, LW ;
SEARS, ER .
CROP SCIENCE, 1966, 6 (06) :559-&
[7]   Identification of molecular markers linked to PM13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat [J].
Cenci, A ;
D'Ovidio, R ;
Tanzarella, OA ;
Ceoloni, C ;
Porceddu, E .
THEORETICAL AND APPLIED GENETICS, 1999, 98 (3-4) :448-454
[8]   LOCATING THE ALIEN CHROMATIN SEGMENT IN COMMON WHEAT - AEGILOPS-LONGISSIMA MILDEW RESISTANT TRANSFERS [J].
CEOLONI, C ;
DELSIGNORE, G ;
ERCOLI, L ;
DONINI, P .
HEREDITAS, 1992, 116 (03) :239-245
[9]   The race-specific resistance gene to powdery mildew, MlRE, has a residual effect on adult plant resistance of winter wheat line RE714 [J].
Chantret, N ;
Pavoine, MT ;
Doussinault, G .
PHYTOPATHOLOGY, 1999, 89 (07) :533-539
[10]   A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat [J].
Chantret, N ;
Mingeot, D ;
Sourdille, P ;
Bernard, M ;
Jacquemin, JM ;
Doussinault, G .
THEORETICAL AND APPLIED GENETICS, 2001, 103 (6-7) :962-971