Progress of the CFETR design

被引:333
作者
Zhuang, G. [1 ]
Li, G. Q. [2 ]
Li, J. [2 ]
Wan, Y. X. [1 ,2 ]
Liu, Y. [3 ]
Wang, X. L. [4 ]
Song, Y. T. [2 ]
Chan, V [1 ,5 ]
Yang, Q. W. [3 ]
Wan, B. N. [2 ]
Duan, X. R. [3 ]
Fu, P. [2 ]
Xiao, B. J. [2 ]
机构
[1] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
[3] Southwest Inst Phys, Chengdu 610041, Sichuan, Peoples R China
[4] China Acad Engn Phys, Mianyangc 621900, Peoples R China
[5] Gen Atom, San Diego, CA USA
关键词
CFETR; tritium self-sufficiency; steady-state operation; fusion reactor design; PHYSICS; MAGNETOHYDRODYNAMICS; RECONSTRUCTION; PARAMETERS; SIMULATION; TRANSPORT; CODE;
D O I
10.1088/1741-4326/ab0e27
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Chinese Fusion Engineering Testing Reactor (CFETR), complementing the ITER facility, is aiming to demonstrate fusion energy production up to 200 MW initially and to eventually reach DEMO relevant power level 1 GW, to manifest a high duty factor of 0.3-0.5, and to pursue tritium self-sufficiency with tritium breeding ratio (TBR) >1. The key challenge to meet the missions of the CFETR is to run the machine in steady state (or long pulse) and high duty factor. By using a multi-dimensional code suite with physics-based models, self-consistent steady-state and hybrid mode scenarios for CFETR have been developed under a high magnetic field up to 6.5 T. The negative-ion neutral beam injection together with high frequency electron cyclotron wave and lower hybrid wave (and/or fast wave) are proposed to be used to drive the current. Subsequently the engineering design of CFETR including the magnet system, vacuum system, tritium breeding blanket, divertor, remote handling and maintenance system will be introduced. Some research and development (R&D) activities are also introduced in this paper.
引用
收藏
页数:14
相关论文
共 48 条
[1]  
[Anonymous], 2017, Nucl. Fusion, DOI [10.1088/1741-4326/aa5bd5, DOI 10.1088/1741-4326/AA5BD5]
[2]  
[Anonymous], 1997, ID126284 LLNL UCRL
[3]   The CRONOS suite of codes for integrated tokamak modelling [J].
Artaud, J. F. ;
Basiuk, V. ;
Imbeaux, F. ;
Schneider, M. ;
Garcia, J. ;
Giruzzi, G. ;
Huynh, P. ;
Aniel, T. ;
Albajar, F. ;
Ane, J. M. ;
Becoulet, A. ;
Bourdelle, C. ;
Casati, A. ;
Colas, L. ;
Decker, J. ;
Dumont, R. ;
Eriksson, L. G. ;
Garbet, X. ;
Guirlet, R. ;
Hertout, P. ;
Hoang, G. T. ;
Houlberg, W. ;
Huysmans, G. ;
Joffrin, E. ;
Kim, S. H. ;
Koechl, F. ;
Lister, J. ;
Litaudon, X. ;
Maget, P. ;
Masset, R. ;
Pegourie, B. ;
Peysson, Y. ;
Thomas, P. ;
Tsitroneand, E. ;
Turco, F. .
NUCLEAR FUSION, 2010, 50 (04)
[4]  
Artaud J. F., 2008, METIS USERS GUIDE TE
[5]   Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
[6]   Numerical simulation of ion cyclotron waves in tokamak plasmas [J].
Brambilla, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 (01) :1-34
[7]   Tokamak profile prediction using direct gyrokinetic and neoclassical simulation [J].
Candy, J. ;
Holland, C. ;
Waltz, R. E. ;
Fahey, M. R. ;
Belli, E. .
PHYSICS OF PLASMAS, 2009, 16 (06)
[8]   Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes [J].
Chan, V. S. ;
Costley, A. E. ;
Wan, B. N. ;
Garofalo, A. M. ;
Leuer, J. A. .
NUCLEAR FUSION, 2015, 55 (02)
[9]   PHYSICS BASIS OF A FUSION DEVELOPMENT FACILITY UTILIZING THE TOKAMAK APPROACH [J].
Chan, V. S. ;
Stambaugh, R. D. ;
Garofalo, A. M. ;
Chu, M. S. ;
Fisher, R. K. ;
Greenfield, C. M. ;
Humphreys, D. A. ;
Lao, L. L. ;
Leuer, J. A. ;
Petrie, T. W. ;
Prater, R. ;
Staebler, G. M. ;
Snyder, P. B. ;
St John, H. E. ;
Turnbull, A. D. ;
Wong, C. P. C. ;
Van Zeeland, M. A. .
FUSION SCIENCE AND TECHNOLOGY, 2010, 57 (01) :66-93
[10]   KINETIC EXTENSIONS OF MAGNETOHYDRODYNAMICS FOR AXISYMMETRICAL TOROIDAL PLASMAS [J].
CHENG, CZ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 211 (01) :1-51