Handling Noisy Labels in Gaze-Based CBIR System

被引:2
作者
Lopez, Stephanie [1 ]
Revel, Arnaud [2 ]
Lingrand, Diane [1 ]
Precioso, Frederic [1 ]
机构
[1] Univ Cote dAzur UCA, I3S, UMR7271, F-06900 Sophia Antipolis, France
[2] Univ La Rochelle, L3i, F-17042 La Rochelle 1, France
来源
ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017) | 2017年 / 10617卷
关键词
CLASSIFICATION;
D O I
10.1007/978-3-319-70353-4_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Handling noisy labels in classification is a core topic given the number of images available online with unprecise labels or even inaccurate ones. In our context, the label uncertainty is obtained by a fully gaze-based labelling process, called GBIE. We apply a noisy-label tolerant algorithm, P-SVM, which combines classification and regression processes. We have determined, among different strategies, a criterion of reliability to discriminate the most reliable labels involved in the classification from the most uncertain ones involved in the regression. The classification accuracy of the P-SVM is evaluated in different learning contexts, and can even compete in some cases with the baseline, i.e. a standard classification SVM trained with the true-class labels.
引用
收藏
页码:396 / 405
页数:10
相关论文
共 15 条
  • [1] [Anonymous], 2014, P 31 INT C INT C MAC
  • [2] [Anonymous], 2007, Tech. Rep
  • [3] Choh Man Teng, 2001, Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference, P269
  • [4] MANTRA: Minimum Maximum Latent Structural SVM for Image Classification and Ranking
    Durand, Thibaut
    Thome, Nicolas
    Cord, Matthieu
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2713 - 2721
  • [5] PATTERN VISION IN YOUNG INFANTS
    FANTZ, RL
    [J]. PSYCHOLOGICAL RECORD, 1958, 8 (02) : 43 - 47
  • [6] Classification in the Presence of Label Noise: a Survey
    Frenay, Benoit
    Verleysen, Michel
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (05) : 845 - 869
  • [7] Garcia L. P. F., 2012, 2012 Brazilian Symposium on Neural Networks (SBRN 2012), P13, DOI 10.1109/SBRN.2012.49
  • [8] Lopez S., INT C ONIMAGE PROC I, P3150
  • [9] A supervised extreme learning committee for food recognition
    Martinel, Niki
    Piciarelli, Claudio
    Micheloni, Christian
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 148 : 67 - 86
  • [10] Kernel-Based Learning From Both Qualitative and Quantitative Labels: Application to Prostate Cancer Diagnosis Based on Multiparametric MR Imaging
    Niaf, Emilie
    Flamary, Remi
    Rouviere, Olivier
    Lartizien, Carole
    Canu, Stephane
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (03) : 979 - 991