Homoclinic saddle to saddle-focus transitions in 4D systems

被引:3
作者
Kalia, Manu [1 ]
Kuznetsov, Yuri A. [1 ,2 ]
Meijer, Hil G. E. [1 ]
机构
[1] Univ Twente, Dept Appl Math, Zilverling Bldg,POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
关键词
homoclinic bifurcations; numerical bifurcation analysis; bifurcation theory; ACOUSTIC-GRAVITY WAVES; EXPONENTIAL EXPANSION; BIFURCATION-ANALYSIS; EXISTENCE; SET;
D O I
10.1088/1361-6544/ab0041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A saddle to saddle-focus homoclinic transition when the stable leading eigenspace is three-dimensional (called the 3DL bifurcation) is analyzed. Here a pair of complex eigenvalues and a real eigenvalue exchange their position relative to the imaginary axis, giving rise to a 3D stable leading eigenspace at the critical parameter values. This transition is different from the standard Belyakov bifurcation, where a double real eigenvalue splits either into a pair of complex-conjugate eigenvalues or two distinct real eigenvalues. In the wild case, we obtain sets of codimension 1 and 2 bifurcation curves and points that asymptotically approach the 3DL bifurcation point and have a structure that differs from that of the standard Belyakov case. We give an example of this bifurcation in a perturbed Lorenz-Stenflo 4D ordinary differential equation model.
引用
收藏
页码:2024 / 2054
页数:31
相关论文
共 38 条
  • [11] NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-2 HOMOCLINIC BIFURCATIONS
    CHAMPNEYS, AR
    KUZNETSOV, YA
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (04): : 785 - 822
  • [12] Interactive Initialization and Continuation of Homoclinic and Heteroclinic Orbits in MATLAB
    De Witte, Virginie
    Govaerts, Willy
    Kuznetsov, Yuri A.
    Friedman, Mark
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 38 (03):
  • [13] Exponential expansion with principal eigenvalues
    Deng, B
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1161 - 1167
  • [15] EXPONENTIAL EXPANSION WITH SILNIKOV SADDLE-FOCUS
    DENG, B
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 82 (01) : 156 - 173
  • [16] MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs
    Dhooge, A
    Govaerts, W
    Kuznetsov, YA
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (02): : 141 - 164
  • [17] Complexity in the bifurcation structure of homoclinic loops to a saddle-focus
    Gonchenko, SV
    Turaev, DV
    Gaspard, P
    Nicolis, G
    [J]. NONLINEARITY, 1997, 10 (02) : 409 - 423
  • [18] Numerical methods for two-parameter local bifurcation analysis of maps
    Govaerts, W.
    Ghaziani, R. Khoshsiar
    Kuznetsov, Yu. A.
    Meijer, H. G. E.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (06) : 2644 - 2667
  • [19] Homburg AJ, 1996, MEM AM MATH SOC, V121, P1
  • [20] Homburg AJ, 2010, HANDBOOK OF DYNAMICAL SYSTEMS, VOL 3, P379