Homoclinic saddle to saddle-focus transitions in 4D systems

被引:3
作者
Kalia, Manu [1 ]
Kuznetsov, Yuri A. [1 ,2 ]
Meijer, Hil G. E. [1 ]
机构
[1] Univ Twente, Dept Appl Math, Zilverling Bldg,POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
关键词
homoclinic bifurcations; numerical bifurcation analysis; bifurcation theory; ACOUSTIC-GRAVITY WAVES; EXPONENTIAL EXPANSION; BIFURCATION-ANALYSIS; EXISTENCE; SET;
D O I
10.1088/1361-6544/ab0041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A saddle to saddle-focus homoclinic transition when the stable leading eigenspace is three-dimensional (called the 3DL bifurcation) is analyzed. Here a pair of complex eigenvalues and a real eigenvalue exchange their position relative to the imaginary axis, giving rise to a 3D stable leading eigenspace at the critical parameter values. This transition is different from the standard Belyakov bifurcation, where a double real eigenvalue splits either into a pair of complex-conjugate eigenvalues or two distinct real eigenvalues. In the wild case, we obtain sets of codimension 1 and 2 bifurcation curves and points that asymptotically approach the 3DL bifurcation point and have a structure that differs from that of the standard Belyakov case. We give an example of this bifurcation in a perturbed Lorenz-Stenflo 4D ordinary differential equation model.
引用
收藏
页码:2024 / 2054
页数:31
相关论文
共 38 条
  • [1] Scientific heritage of LP Shilnikov
    Afraimovich, Valentin S.
    Gonchenko, Sergey V.
    Lerman, Lev M.
    Shilnikov, Andrey L.
    Turaev, Dmitry V.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2014, 19 (04) : 435 - 460
  • [2] [Anonymous], J DYN DIFF EQU
  • [3] [Anonymous], 2004, ELEMENTS APPL BIFURC, DOI DOI 10.1007/978-1-4757-3978-7
  • [4] Arnold VI., 2013, Dynamical Systems V: Bifurcation Theory and Catastrophe Theory, V5, DOI [10.1007/978-3-642-57884-7, DOI 10.1007/978-3-642-57884-7]
  • [5] KNEADINGS, SYMBOLIC DYNAMICS AND PAINTING LORENZ CHAOS
    Barrio, Roberto
    Shilnikov, Andrey
    Shilnikov, Leonid
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [6] Belitskii G.R., 1979, Normal forms, invariants and local maps
  • [7] BIFURCATION SET IN A SYSTEM WITH HOMOCLINIC SADDLE CURVE
    BELYAKOV, LA
    [J]. MATHEMATICAL NOTES, 1980, 28 (5-6) : 910 - 916
  • [8] BIFURCATION OF SYSTEMS WITH HOMOCLINIC CURVE OF A SADDLE-FOCUS WITH SADDLE QUANTITY ZERO
    BELYAKOV, LA
    [J]. MATHEMATICAL NOTES, 1984, 36 (5-6) : 838 - 843
  • [9] Bronstein I. U., 1994, WORLD SCI SERIES N A, V7, pxii
  • [10] A numerical toolbox for homoclinic bifurcation analysis
    Champneys, AR
    Kuznetsov, YA
    Sandstede, B
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (05): : 867 - 887