A dynamic watermarking scheme for quantum images using quantum wavelet transform

被引:142
作者
Song, Xian-Hua [1 ,2 ]
Wang, Shen [1 ]
Liu, Shuai [2 ]
Abd El-Latif, Ahmed A. [1 ,3 ]
Niu, Xia-Mu [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci & Technol, Harbin 150080, Peoples R China
[2] Harbin Univ Sci & Technol, Harbin 150080, Peoples R China
[3] Menoufia Univ, Fac Sci, Dept Math, Shibin Al Kawm 32511, Egypt
基金
中国国家自然科学基金;
关键词
Quantum computation; Quantum image; Quantum wavelet transform; Quantum watermarking;
D O I
10.1007/s11128-013-0629-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a novel watermarking scheme based on quantum wavelet transform (QWT) is proposed. Firstly, the wavelet coefficients are extracted by executing QWT on quantum image. Then, we utilize a dynamic vector for controlling embedding strength instead of a fixed parameter for embedding process in other schemes. Analysis and results show that the proposed dynamic watermarking scheme has better visual quality under a higher embedding capacity and outperforms the existing schemes in the literature.
引用
收藏
页码:3689 / 3706
页数:18
相关论文
共 18 条
[1]   Approximate quantum Fourier transform and decoherence [J].
Barenco, A ;
Ekert, A ;
Suominen, KA ;
Torma, P .
PHYSICAL REVIEW A, 1996, 54 (01) :139-146
[2]  
Bo S., 2011, IEEE INT S INT SIGN, P160
[3]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117
[4]  
Fijany A, 1999, LECT NOTES COMPUT SC, V1509, P10
[5]   Watermarking and authentication of quantum images based on restricted geometric transformations [J].
Iliyasu, Abdullah M. ;
Le, Phuc Q. ;
Dong, Fangyan ;
Hirota, Kaoru .
INFORMATION SCIENCES, 2012, 186 (01) :126-149
[6]   Discrete cosine transforms on quantum computers [J].
Klappenecker, A ;
Rötteler, M .
ISPA 2001: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2001, :464-468
[7]   Fast classical and quantum fractional Walsh transforms [J].
Labunets, V ;
Labunets-Rundblad, E ;
Egiazarian, K ;
Astola, J .
ISPA 2001: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2001, :558-563
[8]  
Latorre J., 2005, ARXIVQUANTPH0510031
[9]  
Le Phuc Q., 2010, IAENG International Journal of Applied Mathematics, V40, P113
[10]   A flexible representation of quantum images for polynomial preparation, image compression, and processing operations [J].
Le, Phuc Q. ;
Dong, Fangyan ;
Hirota, Kaoru .
QUANTUM INFORMATION PROCESSING, 2011, 10 (01) :63-84