Finite Alphabet Iterative Decoders-Part I: Decoding Beyond Belief Propagation on the Binary Symmetric Channel

被引:56
作者
Planjery, Shiva Kumar [1 ]
Declercq, David [1 ]
Danjean, Ludovic [2 ]
Vasic, Bane [2 ]
机构
[1] Univ Cergy Pontoise, ENSEA, CNRS, ETIS Lab,UMR 8051, F-95014 Cergy Pontoise, France
[2] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
关键词
Low-density parity-check codes; belief propagation; error floor; trapping sets; finite precision iterative decoding; binary symmetric channel; PARITY-CHECK CODES; LDPC CODES; ERROR FLOORS; ALGORITHM;
D O I
10.1109/TCOMM.2013.090513.120443
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a new paradigm for finite precision iterative decoding on low-density parity-check codes over the binary symmetric channel. The messages take values from a finite alphabet, and unlike traditional quantized decoders which are quantized versions of the belief propagation (BP) decoder, the proposed finite alphabet iterative decoders (FAIDs) do not propagate quantized probabilities or log-likelihoods and the variable node update functions do not mimic the BP decoder. Rather, the update functions are maps designed using the knowledge of potentially harmful subgraphs that could be present in a given code, thereby rendering these decoders capable of outperforming the BP in the error floor region. On certain column-weight-three codes of practical interest, we show that there exist FAIDs that surpass the floating-point BP decoder in the error floor region while requiring only three bits of precision for the representation of the messages. Hence, FAIDs are able to achieve a superior performance at much lower complexity. We also provide a methodology for the selection of FAIDs that is not code-specific, but gives a set of candidate FAIDs containing potentially good decoders in the error floor region for any column-weight-three code. We validate the code generality of our methodology by providing particularly good three-bit precision FAIDs for a variety of codes with different rates and lengths.
引用
收藏
页码:4033 / 4045
页数:13
相关论文
共 37 条
[1]  
[Anonymous], P 2010 INT S TURB CO
[2]  
[Anonymous], 1963, Low-Density Parity-Check Codes
[3]  
Butler B. K., P 2012 IEEE GLOB COM, P3225
[4]  
Butler B. K., P 2011 ALL C COMM CO, P204
[5]   LDPC Decoders with Informed Dynamic Scheduling [J].
Casado, Andres I. Vila ;
Griot, Miguel ;
Wesel, Richard D. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2010, 58 (12) :3470-3479
[6]   Reduced-complexity decoding of LDPC codes [J].
Chen, JH ;
Dholakia, A ;
Eleftheriou, E ;
Fossorier, MRC ;
Hu, XY .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2005, 53 (08) :1288-1299
[7]  
Chilappagari SK, 2006, IEEE ICC, P1089
[8]   Instanton-Based Techniques for Analysis and Reduction of Error Floors of LDPC Codes [J].
Chilappagari, Shashi Kiran ;
Chertkov, Michael ;
Stepanov, Mikhail G. ;
Vasic, Bane .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2009, 27 (06) :855-865
[9]   Error-Correction Capability of Column-Weight-Three LDPC Codes [J].
Chilappagari, Shashi Kiran ;
Vasic, Bane .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (05) :2055-2061
[10]  
Danjean L., P 2011 IEEE INF THEO, P345