Estimation of the convection coefficient in elliptic equations

被引:33
作者
Ito, K [1 ]
Kunisch, K [1 ]
机构
[1] KARL FRANZENS UNIV GRAZ, INST MATH, A-8010 GRAZ, AUSTRIA
关键词
D O I
10.1088/0266-5611/13/4/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The parameter estimation problem for the convection coefficient in elliptic equations is considered in the class of L-n(2)-vector fields. The optimality system is characterized and the convergence of the gradient method is proved. To apply the SQP-method to the singular optimality system, a modification involving a feasibility step in the primal and dual variables is introduced. The resulting algorithm has a second-order convergence rate. Numerical experiments are included.
引用
收藏
页码:995 / 1013
页数:19
相关论文
共 8 条
[1]  
COLONIUS F, 1986, J REINE ANGEW MATH, V370, P1
[2]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[3]  
Girault V, 1986, SPRINGER SERIES COMP, V5
[4]  
Hackbusch W., 1992, ELLIPTIC DIFFERENTIA
[5]   Augmented Lagrangian-SQP-methods in Hilbert spaces and application to control in the coefficients problems [J].
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (01) :96-125
[6]  
KUNISCH K, 1995, SIAM PROC S, P199
[7]   COUPLED INVERSE PROBLEMS IN GROUNDWATER MODELING .1. SENSITIVITY ANALYSIS AND PARAMETER-IDENTIFICATION [J].
SUN, NZ ;
YEH, WWG .
WATER RESOURCES RESEARCH, 1990, 26 (10) :2507-2525
[8]  
Troianiello G. M., 1987, ELLIPTIC DIFFERENTIA