Predicting Critical Micelle Concentration Values of Non-Ionic Surfactants by Using Artificial Neural Networks

被引:13
作者
Astray, Gonzalo [2 ]
Iglesias-Otero, Manuel A. [3 ]
Moldes, Oscar A. [3 ]
Mejuto, Juan C. [1 ]
机构
[1] Univ Vigo, Dept Phys Chem, Orense, Galicia, Spain
[2] Univ Vigo, Orense, Galicia, Spain
[3] Univ Vigo, Colloid Chem Grp, Fac Sci Ourense, Orense, Galicia, Spain
关键词
Artificial Neural Network; ANN; CMC; non-ionic surfactants; GENETIC ALGORITHM; NMR-SPECTRA; DISCRIMINATION; CLASSIFICATION; TEMPERATURE; KINETICS; DESIGN; PHASE; MODEL;
D O I
10.3139/113.110242
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Critical Micelle Concentration is a fundamental property on studying behaviour of surfactants. In general terms it depends on temperature, pressure and on the existence and concentration of other surface-active substances and electrolytes. In this work it is presented a model based on Artificial Neural Networks to obtain predictive values of Critical Micelle Concentration (CMC) of some non-ionic surfactants. ANN model works using topological descriptors of the molecules involved together with already known CMC values and provides predictive values for new cases. It is proposed a specific architecture for ANN consisting of an input layer with seven neurons, one intermediate layer with fourteen neurons and one neuron in the output layer. This ANN model seems to be a good method for forecast CMC.
引用
收藏
页码:118 / 124
页数:7
相关论文
共 56 条
  • [11] Prediction of Ethene + Oct-1-ene Copolymerization Ideal Conditions Using Artificial Neuron Networks
    Astray, G.
    Caderno, P. V.
    Ferreiro-Lage, J. A.
    Galvez, J. F.
    Mejuto, J. C.
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (09) : 3542 - 3547
  • [12] Artificial neural networks: a promising tool to evaluate the authenticity of wine Redes neuronales: una herramienta prometedora para evaluar la autenticidad del vino
    Astray, G.
    Castillo, J. X.
    Ferreiro-Lage, J. A.
    Galvez, J. F.
    Mejuto, J. C.
    [J]. CYTA-JOURNAL OF FOOD, 2010, 8 (01) : 79 - 86
  • [13] The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as Alternaria spores
    Astray, Gonzalo
    Javier Rodriguez-Rajo, F.
    Angel Ferreiro-Lage, J.
    Fernandez-Gonzalez, Maria
    Jato, Victoria
    Carlos Mejuto, J.
    [J]. JOURNAL OF ENVIRONMENTAL MONITORING, 2010, 12 (11): : 2145 - 2152
  • [14] COMPARISON OF SONAR DISCRIMINATION - DOLPHIN AND AN ARTIFICIAL NEURAL-NETWORK
    AU, WWL
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1994, 95 (05) : 2728 - 2735
  • [15] COMPLEX-FORMATION BETWEEN SODIUM DODECYL-SULFATE AND POLY(4-VINYLPYRIDINE N-OXIDE)
    BAHADUR, P
    DUBIN, P
    RAO, YK
    [J]. LANGMUIR, 1995, 11 (06) : 1951 - 1955
  • [16] USE OF NEURAL NETS FOR DYNAMIC MODELING AND CONTROL OF CHEMICAL PROCESS SYSTEMS
    BHAT, N
    MCAVOY, TJ
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1990, 14 (4-5) : 573 - 583
  • [17] BURWELL RL, 1976, PURE APPL CHEM, V46, P71
  • [18] NONIONIC MICELLES IN MIXED WATER-GLYCEROL SOLVENT
    CANTU, L
    CORTI, M
    DEGIORGIO, V
    HOFFMANN, H
    ULBRICHT, W
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1987, 116 (02) : 384 - 389
  • [19] Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air
    Castellano-Méndez, M
    Aira, MJ
    Iglesias, I
    Jato, V
    González-Manteiga, W
    [J]. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2005, 49 (05) : 310 - 316
  • [20] A neural network approach to prediction of glass transition temperature of polymers
    Chen, Xi
    Sztandera, Les
    Cartwright, Hugh M.
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2008, 23 (01) : 22 - 32