TRUDINGER-MOSER TYPE INEQUALITY AND EXISTENCE OF SOLUTION FOR PERTURBED NON-LOCAL ELLIPTIC OPERATORS WITH EXPONENTIAL NONLINEARITY

被引:20
作者
Bahrouni, Anouar [1 ]
机构
[1] Univ Monastir, Dept Math, Fac Sci, Monastir 5019, Tunisia
关键词
Integrodifferential operators; exponential nonlinearity; Trudinger-Moser inequality; existence of solution; variational method; BLOW;
D O I
10.3934/cpaa.2017011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the following perturbed nonlocal problem with exponential nonlinearity {-L(K)u + vertical bar u vertical bar(p-2) u + h(u) = f in Omega, u = 0, in R-N \ Omega, (1) where s is an element of (0, 1), N = ps, p >= 2 and f is an element of L-infinity (R-N). First, we generalize a suitable Trudinger-Moser inequality to a fractional functional space. Then, using the Ekeland's variational principle, we prove the existence of a solution of problem (1).
引用
收藏
页码:243 / 252
页数:10
相关论文
共 24 条
[1]   Trudinger type inequalities in RN and their best exponents [J].
Adachi, S ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2051-2057
[2]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[3]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008
[4]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[5]   Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Salsa, Sandro ;
Silvestre, Luis .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :425-461
[6]   Variational problems with free boundaries for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Roquejoffre, Jean-Michel ;
Sire, Yannick .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) :1151-1179
[7]  
Cheng X., 2013, J MATH PHYS, V54
[8]   On an inequality by N. Trudinger and J. Moser and related elliptic equations [J].
de Figueiredo, DG ;
Do O, JM ;
Ruf, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (02) :135-152
[9]   ELLIPTIC-EQUATIONS IN R(2) WITH NONLINEARITIES IN THE CRITICAL GROWTH RANGE [J].
DEFIGUEIREDO, DG ;
MIYAGAKI, OH ;
RUF, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (02) :139-153
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573