TRUDINGER-MOSER TYPE INEQUALITY AND EXISTENCE OF SOLUTION FOR PERTURBED NON-LOCAL ELLIPTIC OPERATORS WITH EXPONENTIAL NONLINEARITY

被引:19
作者
Bahrouni, Anouar [1 ]
机构
[1] Univ Monastir, Dept Math, Fac Sci, Monastir 5019, Tunisia
关键词
Integrodifferential operators; exponential nonlinearity; Trudinger-Moser inequality; existence of solution; variational method; BLOW;
D O I
10.3934/cpaa.2017011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the following perturbed nonlocal problem with exponential nonlinearity {-L(K)u + vertical bar u vertical bar(p-2) u + h(u) = f in Omega, u = 0, in R-N \ Omega, (1) where s is an element of (0, 1), N = ps, p >= 2 and f is an element of L-infinity (R-N). First, we generalize a suitable Trudinger-Moser inequality to a fractional functional space. Then, using the Ekeland's variational principle, we prove the existence of a solution of problem (1).
引用
收藏
页码:243 / 252
页数:10
相关论文
共 24 条
  • [1] Trudinger type inequalities in RN and their best exponents
    Adachi, S
    Tanaka, K
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) : 2051 - 2057
  • [2] Elliptic problems involving the fractional Laplacian in RN
    Autuori, Giuseppina
    Pucci, Patrizia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2340 - 2362
  • [3] Ground state solutions of scalar field fractional Schrodinger equations
    Bisci, Giovanni Molica
    Radulescu, Vicentiu D.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2985 - 3008
  • [4] UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS
    BREZIS, H
    MERLE, F
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) : 1223 - 1253
  • [5] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
    Caffarelli, Luis A.
    Salsa, Sandro
    Silvestre, Luis
    [J]. INVENTIONES MATHEMATICAE, 2008, 171 (02) : 425 - 461
  • [6] Variational problems with free boundaries for the fractional Laplacian
    Caffarelli, Luis A.
    Roquejoffre, Jean-Michel
    Sire, Yannick
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) : 1151 - 1179
  • [7] Cheng X., 2013, J MATH PHYS, V54
  • [8] On an inequality by N. Trudinger and J. Moser and related elliptic equations
    de Figueiredo, DG
    Do O, JM
    Ruf, B
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (02) : 135 - 152
  • [9] ELLIPTIC-EQUATIONS IN R(2) WITH NONLINEARITIES IN THE CRITICAL GROWTH RANGE
    DEFIGUEIREDO, DG
    MIYAGAKI, OH
    RUF, B
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (02): : 139 - 153
  • [10] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573