Uniqueness for solutions of Fokker-Planck equations related to singular SPDE driven by L,vy and cylindrical Wiener noise

被引:1
作者
Wiesinger, Sven [1 ]
机构
[1] Univ Bielefeld, Dept Math, D-33615 Bielefeld, Germany
关键词
Singular SPDE; Fokker-Planck equation; Levy process; GENERALIZED MEHLER SEMIGROUPS; INFINITE-DIMENSIONAL SPACES; PSEUDODIFFERENTIAL-OPERATORS; KOLMOGOROV OPERATORS; COEFFICIENTS; DISSIPATIVITY; GENERATORS; DEGENERATE; EXISTENCE;
D O I
10.1007/s00028-013-0183-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize recent results concerning uniqueness of solutions to Fokker-Planck equations (FPE) related to singular Hilbert space-valued SPDE from the (cylindrical) Wiener noise case to the case of SPDE driven by noise with jumps. Using a different space of test functions, we can relax the usual integrability assumptions and obtain more general uniqueness results for FPE, even in the case of SPDE driven by Wiener noise.
引用
收藏
页码:369 / 394
页数:26
相关论文
共 32 条
  • [1] On flows associated to Sobolev vector fields in Wiener spaces: An approach a la DiPerna-Lions
    Ambrosio, Luigi
    Figalli, Alessio
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (01) : 179 - 214
  • [2] [Anonymous], 2007, ENCY MATH ITS APPL
  • [3] [Anonymous], 1986, Probability in Banach spaces-stable and infinitely divisible distributions
  • [4] [Anonymous], 2002, LONDON MATH SOC LECT
  • [6] The martingale problem for pseudo-differential operators on infinite-dimensional spaces
    Bogachev, V
    Lescot, P
    Röckner, M
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1999, 153 : 101 - 118
  • [7] On parabolic equations for measures
    Bogachev, V. I.
    Da Prato, G.
    Roeckner, M.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (03) : 397 - 418
  • [8] Fokker-Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces
    Bogachev, V. I.
    Da Prato, G.
    Roeckner, M.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (04) : 1269 - 1298
  • [9] BOGACHEV V.I., 1996, THEORY RELATED FIELD, V105, P193
  • [10] Uniqueness for Solutions of Fokker-Planck Equations on Infinite Dimensional Spaces
    Bogachev, Vladimir
    Da Prato, Giuseppe
    Roeckner, Michael
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (06) : 925 - 939