STRONG CONVERGENCE THEOREMS BY MONOTONE HYBRID METHOD FOR A FAMILY OF GENERALIZED NONEXPANSWE MAPPINGS IN BANACH SPACES

被引:7
作者
Klin-eam, Chakkrid [1 ,2 ]
Suantai, Suthep [2 ,3 ]
Takahashi, Wataru [4 ]
机构
[1] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok 65000, Thailand
[2] CHE, Ctr Excellence Math, Bangkok 10400, Thailand
[3] Chiang Mai Univ, Fac Sci, Dept Math, Bangkok 50200, Thailand
[4] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2012年 / 16卷 / 06期
关键词
Monotone hybrid method; Generalized nonexpansive mapping; NST-condition; Fixed point; Banach space; PROXIMAL-TYPE ALGORITHM; FIXED-POINTS; OPERATORS;
D O I
10.11650/twjm/1500406834
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study monotone hybrid method for finding a common fixed point of a family of generalized nonexpansive mappings and then prove a strong convergence theorem for a family of generalized nonexpansive mappings in Banach spaces. Using this theorem, we obtain some new results for a generalized nonexpansive mapping and two generalized nonexpansive mappings in Banach spaces. Moreover, we apply our main result to obtain a strong convergence theorem for a family of nonexpansive mappings in a Hilbert space.
引用
收藏
页码:1971 / 1989
页数:19
相关论文
共 31 条
[1]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[2]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[3]   Block iterative methods for a finite family of generalized nonexpansive mappings in Banach spaces [J].
Ibaraki, Takanori ;
Takahashi, Wataru .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (3-4) :362-375
[4]   A new projection and convergence theorems for the projections in Banach spaces [J].
Ibaraki, Takanori ;
Takahashi, Wataru .
JOURNAL OF APPROXIMATION THEORY, 2007, 149 (01) :1-14
[5]  
Ibaraki T, 2010, CONTEMP MATH, V513, P169
[6]  
Inoue G, 2009, J CONVEX ANAL, V16, P791
[7]  
Inthakon W, 2010, J NONLINEAR CONVEX A, V11, P45
[8]   Approximating solutions of maximal monotone operators in Hilbert spaces [J].
Kamimura, S ;
Takahashi, W .
JOURNAL OF APPROXIMATION THEORY, 2000, 106 (02) :226-240
[9]   Weak and strong convergence theorems for maximal monotone operators in a Banach space [J].
Kamimura, S ;
Kohsaka, F ;
Takahashi, W .
SET-VALUED ANALYSIS, 2004, 12 (04) :417-429
[10]  
Kamimura SJ, 2003, SIAM J OPTIMIZ, V13, P938