Conserved integrals for inviscid compressible fluid flow in Riemannian manifolds

被引:11
作者
Anco, Stephen C. [1 ]
Dar, Amanullah [1 ,2 ]
Tufail, Nazim [3 ]
机构
[1] Brock Univ, Dept Math & Stat, St Catharines, ON L2S 3A1, Canada
[2] Mirpur Univ Sci & Technol, Dept Math, Mirpur, AJ&K, Pakistan
[3] Quaid i Azam Univ, Dept Math, Islamabad, Pakistan
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2015年 / 471卷 / 2182期
基金
加拿大自然科学与工程研究理事会;
关键词
compressible fluid; conserved integral; kinematic conservation law; moving domain; moving surface; SPATIAL DIMENSIONS; LAWS; CLASSIFICATION; HYDRODYNAMICS; EQUATIONS;
D O I
10.1098/rspa.2015.0223
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An explicit determination of all local conservation laws of kinematic type on moving domains and moving surfaces is presented for the Euler equations of inviscid compressible fluid flow in curved Riemannian manifolds in n>1 dimensions. All corresponding kinematic constants of motion are also determined, along with all Hamiltonian kinematic symmetries and kinematic Casimirs which arise from the Hamiltonian structure of the inviscid compressible fluid equations.
引用
收藏
页数:24
相关论文
共 18 条
[1]   New Conserved Vorticity Integrals for Moving Surfaces in Multi-Dimensional Fluid Flow [J].
Anco, Stephen C. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (03) :439-451
[2]   Conservation laws of inviscid non-isentropic compressible fluid flow in n > 1 spatial dimensions [J].
Anco, Stephen C. ;
Dar, Amanullah .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2121) :2605-2632
[3]   Classification of conservation laws of compressible isentropic fluid flow in n>1 spatial dimensions [J].
Anco, Stephen C. ;
Dar, Amanullah .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2108) :2461-2488
[4]  
[Anonymous], 1998, Appl. Math. Sci.
[6]  
Arnold V. I., 1969, Uspehi Mat. Nauk, V24, P225, DOI DOI 10.1007/978-3-642-31031-7_16
[7]  
Bluman GW., 2009, APPL SYMMETRY METHOD
[8]  
Dezin AA., 1983, Z ANAL ANWEND, V2, P401, DOI DOI 10.4171/ZAA
[9]  
Ibragimov NH, 1994, CRC HDB LIE GROUP AN, V1
[10]  
IBRAGIMOV NK, 1973, DOKL AKAD NAUK SSSR+, V210, P1307