Sofic groups and profinite topology on free groups

被引:21
作者
Glebsky, Lev [1 ]
Manuel Rivera, Luis [1 ]
机构
[1] IICO UASLP, San Luis Potosi 7820, Mexico
关键词
Sofic groups; Profinite topology; Conjugacy classes; Free groups;
D O I
10.1016/j.jalgebra.2008.08.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a definition of weakly sofic groups (w-sofic groups). Our definition is a rather natural extension of the definition of sofic groups where instead of the Hamming metric on symmetric groups we use general bi-invariant metrics on finite groups. The existence of non-w-sofic groups is equivalent to some conjecture about profinite topology on free groups. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3512 / 3518
页数:7
相关论文
共 20 条
[11]   SUBGROUPS OF FINITE INDEX IN PROFINITE GROUPS [J].
HARTLEY, B .
MATHEMATISCHE ZEITSCHRIFT, 1979, 168 (01) :71-76
[12]   Extending partial automorphisms and the profinite topology on free groups [J].
Herwig, B ;
Lascar, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (05) :1985-2021
[13]   THE P-ADIC TOPOLOGY ON A FREE GROUP - A COUNTEREXAMPLE [J].
HOWIE, J .
MATHEMATISCHE ZEITSCHRIFT, 1984, 187 (01) :25-27
[14]   Diameters of finite simple groups: sharp bounds and applications [J].
Liebeck, MW ;
Shalev, A .
ANNALS OF MATHEMATICS, 2001, 154 (02) :383-406
[15]  
Lyndon R. C., 1977, Combinatorial group theory, V89
[16]   On finitely generated profinite groups, I: strong completeness and uniform bounds [J].
Nikolov, Nikolay ;
Segal, Dan .
ANNALS OF MATHEMATICS, 2007, 165 (01) :171-238
[17]   On finitely generated profinite groups, II: products in quasisimple groups [J].
Nikolov, Nikolay ;
Segal, Dan .
ANNALS OF MATHEMATICS, 2007, 165 (01) :239-273
[18]  
PESTOV V, ARXIV08043968
[19]   ON THE PROFINITE TOPOLOGY ON A FREE GROUP [J].
RIBES, L ;
ZALESSKII, PA .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 :37-43
[20]  
WEISS B, 2000, ERGODIC THEORY HAR A, V62, P350