Sofic groups and profinite topology on free groups

被引:21
作者
Glebsky, Lev [1 ]
Manuel Rivera, Luis [1 ]
机构
[1] IICO UASLP, San Luis Potosi 7820, Mexico
关键词
Sofic groups; Profinite topology; Conjugacy classes; Free groups;
D O I
10.1016/j.jalgebra.2008.08.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a definition of weakly sofic groups (w-sofic groups). Our definition is a rather natural extension of the definition of sofic groups where instead of the Hamming metric on symmetric groups we use general bi-invariant metrics on finite groups. The existence of non-w-sofic groups is equivalent to some conjecture about profinite topology on free groups. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3512 / 3518
页数:7
相关论文
共 20 条
[1]  
ALEKSEEV MA, 1999, TEOR PREDST DIN SIST, V3, P224
[2]  
ALEKSEEV MA, 2005, TEOR PREDST DIN SIST, V3, P287
[3]   A constructive version of the Ribes-Zalesskii product theorem [J].
Auinger, K ;
Steinberg, B .
MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (02) :287-297
[4]  
Beck A, 1973, LECT NOTES MATH, V318, P120
[5]   Injective linear cellular automata and sofic groups [J].
Ceccherini-Silberstein, Tullio ;
Coornaert, Michel .
ISRAEL JOURNAL OF MATHEMATICS, 2007, 161 (01) :1-15
[6]   Linear cellular automata over modules of finite length and stable finiteness of group rings [J].
Ceecherini-Silberstein, Tullio ;
Coornaert, Michel .
JOURNAL OF ALGEBRA, 2007, 317 (02) :743-758
[7]  
DEZA M, METRICS PERMUTATIONS
[8]   Hyperlinearity, essentially free actions and L2-invariants.: The sofic property [J].
Elek, G ;
Szabó, E .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :421-441
[9]   Sofic groups and direct finiteness [J].
Elek, G ;
Szabó, E .
JOURNAL OF ALGEBRA, 2004, 280 (02) :426-434
[10]  
Gromov M., 1999, J EUR MATH SOC, V1, P109, DOI [10.1007/PL00011162, DOI 10.1007/PL00011162]