Option Tracing: Beyond Correctness Analysis in Knowledge Tracing

被引:11
作者
Ghosh, Aritra [1 ]
Raspat, Jay
Lan, Andrew [1 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
来源
ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2021), PT I | 2021年 / 12748卷
基金
美国国家科学基金会;
关键词
D O I
10.1007/978-3-030-78292-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge tracing refers to a family of methods that estimate each student's knowledge component/skill mastery level from their past responses to questions. One key limitation of most existing knowledge tracing methods is that they can only estimate an overall knowledge level of a student per knowledge component/skill since they analyze only the (usually binary-valued) correctness of student responses. Therefore, it is hard to use them to diagnose specific student errors. In this paper, we extend existing knowledge tracing methods beyond correctness prediction to the task of predicting the exact option students select in multiple choice questions. We quantitatively evaluate the performance of our option tracing methods on two large-scale student response datasets. We also qualitatively evaluate their ability in identifying common student errors in the form of clusters of incorrect options across different questions that correspond to the same error.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 47 条
[1]   Using erroneous examples to improve mathematics learning with a web-based tutoring system [J].
Adams, Deanne M. ;
McLaren, Bruce M. ;
Durkin, Kelley ;
Mayer, Richard E. ;
Rittle-Johnson, Bethany ;
Isotani, Seiji ;
van Velsen, Martin .
COMPUTERS IN HUMAN BEHAVIOR, 2014, 36 :401-411
[2]  
Anderson J., 1985, Hum. Comput. Interact., V1, P107
[3]  
[Anonymous], 2010, Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning, DOI [10.1016/B978-0-12-373594-2.X0001-9, DOI 10.1016/B978-0-12-373594-2.X0001-9]
[4]  
Brown I. S., 1978, Cognitive science, V2, P155, DOI [10.1016/S0364-0213(78)80004-4, DOI 10.1207/S15516709COG0202_4]
[5]  
Cen H, 2006, LECT NOTES COMPUT SC, V4053, P164
[6]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[7]  
Choffin B., 2019, P 12 INT C ED DAT MI, P29
[8]   EdNet: A Large-Scale Hierarchical Dataset in Education [J].
Choi, Youngduck ;
Lee, Youngnam ;
Shin, Dongmin ;
Cho, Junghyun ;
Park, Seoyon ;
Lee, Seewoo ;
Baek, Jineon ;
Bae, Chan ;
Kim, Byungsoo ;
Heo, Jaewe .
ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2020), PT II, 2020, 12164 :69-73
[9]  
CORBETT AT, 1994, USER MODEL USER-ADAP, V4, P253, DOI 10.1007/BF01099821
[10]   Where's the Reward?: A Review of Reinforcement Learning for Instructional Sequencing [J].
Doroudi, Shayan ;
Aleven, Vincent ;
Brunskill, Emma .
INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION, 2019, 29 (04) :568-620