On abelian group actions and Galois quantizations

被引:1
作者
Huru, H. L. [1 ]
Lychagin, V. V. [2 ]
机构
[1] Finnmark Univ Coll, N-9509 Alta, Norway
[2] Univ Tromso, N-9037 Tromso, Norway
关键词
Categorical quantizations; Galois extensions; Clifford algebras; HOPF-ALGEBRAS;
D O I
10.1016/j.geomphys.2013.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantizations of actions of finite abelian groups G are explicitly described by elements in the tensor square of the group algebra of G. Over algebraically closed fields of characteristic 0 these are in one to one correspondence with the second cohomology group of the dual of G. With certain adjustments this result is applied to group actions over any field of characteristic 0. In particular we consider the quantizations of Galois extensions, which are quantized by "deforming" the multiplication. For the splitting fields of products of quadratic polynomials this produces quantized Galois extensions that all are Clifford type algebras. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 14 条
  • [1] Chari V., 1995, GUIDE QUANTUM GROUPS
  • [2] GROUP-GRADED RINGS, SMASH PRODUCTS, AND GROUP-ACTIONS
    COHEN, M
    MONTGOMERY, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (01) : 237 - 258
  • [3] Dummit D. S., 2004, ABSTRACT ALGEBRA, V3
  • [4] Epstein D.B.A., 1966, INVENT MATH, V1, P221, DOI DOI 10.1007/BF01452242
  • [5] Huru H. L., 2007, LOBACHEVSKII J MATH, V25, P131
  • [6] Huru H. L., 2006, LOBACHEVSKII J MATH, V24, P13
  • [7] Huru H. L., 2012, J GEN LIE THEORY APP, V6, P15
  • [8] Huru H.L., 2008, J GEN LIE THEORY APP, V2, P35
  • [9] Lane Saunders Mac, 1998, CATEGORIES WORKING M, V5
  • [10] LANG S, 1993, ALGEBRA