Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the (p1, ..., pn)-Laplacian

被引:35
作者
Afrouzi, G. A. [1 ]
Heidarkhani, S. [1 ]
机构
[1] Univ Mazandaran, Fac Basic Sci, Dept Math, Babol Sar, Iran
关键词
Three solutions; Critical point; (p(1); .; p(n))-Laplacian; Multiplicity results; Dirichlet problem; 2 NONTRIVIAL SOLUTIONS;
D O I
10.1016/j.na.2007.11.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of at least three weak solutions for the quasilinear elliptic systems {Delta(p1)u(1) + lambda F-u1(x, u(1), u(2), ..., u(n)) = 0 in Omega, Delta(p2)u(2) + lambda F-u2(x, u(1), u(2), ..., u(n)) = 0 in Omega, ... D(pn)u(n) + lambda F-un(x, u(1), u(2), ..., u(n)) = 0 in Omega, u(i) = 0 for 1 <= i <= n on partial derivative Omega. Our main tool is a recent three critical points theorem of Ricceri [B. Ricceri, On a three critical points theorem, Arch. Math. (Base]) 75 (2000) 220-226]. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 21 条
[1]   Three solutions for a quasilinear boundary value problem [J].
Afrouzi, G. A. ;
Heidarkhani, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3330-3336
[2]   Three solutions for a Dirichlet boundary value problem involving the p-Laplacian [J].
Afrouzi, G. A. ;
Heidarkhani, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (10) :2281-2288
[3]   Infinitely many arbitrarily small positive solutions for the Dirichlet problem involving the p-Laplacian [J].
Anello, G ;
Cordaro, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :511-519
[4]   Some remarks on a system of quasilinear elliptic equations [J].
Boccardo, L ;
de Figueiredo, DG .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (03) :309-323
[5]   Existence of three solutions for a two point boundary value problem [J].
Bonannao, G .
APPLIED MATHEMATICS LETTERS, 2000, 13 (05) :53-57
[6]   Multiplicity theorems for the Dirichlet problem involving the p-Laplacian [J].
Bonanno, G ;
Livrea, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (01) :1-7
[7]   Existence of multiple solutions for quasilinear systems via fibering method [J].
Bozhkov, Y ;
Mitidieri, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (01) :239-267
[8]   On some nonlinear elliptic systems [J].
Djellit, A ;
Tas, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (05) :695-706
[9]   Quasilinear elliptic systems with critical Sobolev exponents in RN [J].
Djellit, Ali ;
Tas, Saadia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (07) :1485-1497
[10]  
Drbek P., 2003, Differ. Integral Equ, V16, P1519