Schwarz-type lemmas for generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds

被引:5
作者
Chong, Tian [1 ]
Dong, Yuxin [2 ]
Ren, Yibin [3 ]
Yu, Weike [2 ]
机构
[1] Shanghai Polytech Univ, Coll Arts & Sci, Sch Sci, 2360 Jin Hai Rd, Shanghai 201209, Peoples R China
[2] Fudan Univ, Sch Math Sci, 220 Handan Rd, Shanghai 200433, Peoples R China
[3] Zhejiang Normal Univ, Coll Math & Comp Sci, 688 Yingbin Rd, Jinhua 321004, Zhejiang, Peoples R China
关键词
53C25 (primary); 32V20 (secondary);
D O I
10.1112/blms.12394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider some generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds. By Bochner formulas and comparison theorems, we establish related Schwarz-type results. As corollaries, the Liouville theorem and little Picard theorem for basic CR functions are deduced. Finally, we study CR Caratheodory pseudo-distance on CR manifolds.
引用
收藏
页码:26 / 41
页数:16
相关论文
共 20 条
[1]   An extension of Schwarz's lemma [J].
Ahlfors, Lars V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :359-364
[2]  
[Anonymous], 1968, Journal of Differential Geometry
[3]  
Boyer C., 2008, Sasakian Geometry
[4]   The black lemma in analytical functions of two complex quantitative characteristics [J].
Caratheodory, C .
MATHEMATISCHE ANNALEN, 1927, 97 :76-98
[5]  
CHEN Z, 1979, SCI SINICA, V22, P1238
[6]  
Chern S.-s., 1968, P S PURE MATH, V11, P157
[7]   Pseudo-harmonic Maps from Complete Noncompact Pseudo-Hermitian Manifolds to Regular Balls [J].
Chong, Tian ;
Dong, Yuxin ;
Ren, Yibin ;
Zhang, Wei .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (04) :3512-3541
[8]   ON HARMONIC AND PSEUDOHARMONIC MAPS FROM PSEUDO-HERMITIAN MANIFOLDS [J].
Chong, Tian ;
Dong, Yuxin ;
Ren, Yibin ;
Yang, Guilin .
NAGOYA MATHEMATICAL JOURNAL, 2019, 234 :170-210
[9]  
Chow W-L., 1939, Math. Ann, V117, P98, DOI [10.1007/BF01450011, DOI 10.1007/BF01450011]
[10]   Schwarz Type Lemmas for Pseudo-Hermitian Manifolds [J].
Dong, Yuxin ;
Ren, Yibin ;
Yu, Weike .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (03) :3161-3195