Improving the stochastic watershed

被引:14
作者
Bernander, Karl B.
Gustavsson, Kenneth
Selig, Bettina
Sintorn, Ida-Maria
Hendriks, Cris L. Luengo [1 ]
机构
[1] Uppsala Univ, Ctr Image Anal, S-75105 Uppsala, Sweden
关键词
Mathematical morphology; Image segmentation; Random process; Stochastic watershed; Seeded watershed; Uniform grid;
D O I
10.1016/j.patrec.2013.02.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The stochastic watershed is an unsupervised segmentation tool recently proposed by Angulo and Jeulin. By repeated application of the seeded watershed with randomly placed markers, a probability density function for object boundaries is created. In a second step, the algorithm then generates a meaningful segmentation of the image using this probability density function. The method performs best when the image contains regions of similar size, since it tends to break up larger regions and merge smaller ones. We propose two simple modifications that greatly improve the properties of the stochastic watershed: (1) add noise to the input image at every iteration, and (2) distribute the markers using a randomly placed grid. The noise strength is a new parameter to be set, but the output of the algorithm is not very sensitive to this value. In return, the output becomes less sensitive to the two parameters of the standard algorithm. The improved algorithm does not break up larger regions, effectively making the algorithm useful for a larger class of segmentation problems. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:993 / 1000
页数:8
相关论文
共 17 条
  • [1] Angulo J., 2010, P SPIE S DEF SEC SEN
  • [2] Contour Detection and Hierarchical Image Segmentation
    Arbelaez, Pablo
    Maire, Michael
    Fowlkes, Charless
    Malik, Jitendra
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) : 898 - 916
  • [3] Beucher S., 1979, INT WORKSH REAL TIM
  • [4] Coelho Luis Pedro, 2009, Proc IEEE Int Symp Biomed Imaging, V5193098, P518
  • [5] Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds
    Cousty, Jean
    Bertrand, Gilles
    Najman, Laurent
    Couprie, Michel
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (05) : 925 - 939
  • [6] Cressie N., 1993, Statistics for Spatial Data, DOI [10.1002/9781119115151, DOI 10.1002/9781119115151]
  • [7] Segmentation of 3D microtomographic images of granular materials with the stochastic watershed
    Faessel, M.
    Jeulin, D.
    [J]. JOURNAL OF MICROSCOPY, 2010, 239 (01) : 17 - 31
  • [8] Revisiting priority queues for image analysis
    Hendriks, Cris L. Luengo
    [J]. PATTERN RECOGNITION, 2010, 43 (09) : 3003 - 3012
  • [9] Fast noise variance estimation
    Immerkaer, J
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 1996, 64 (02) : 300 - 302
  • [10] Jeulin Dominique, 2007, P 8 INT S MATH MORPH, P265