A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions

被引:75
作者
Kozono, Hideo [1 ]
Terasawa, Yutaka [2 ]
Wakasugi, Yuta [2 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Dept Math, Tokyo 1698555, Japan
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
关键词
Navier-Stokes equations; Finite Dirichlet integral; Scaling invariance; Liouville-type theorem;
D O I
10.1016/j.jfa.2016.06.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the 3D homogeneous stationary Navier-Stokes equations in the whole space R-3 We deal with solutions vanishing at infinity in the class of the fmite Dirichlet integral. By means of quantities having the same scaling property as the Dirichlet integral, we establish new a priori estimates. As an application, we prove the Liouville theorem in the marginal case of scaling invariance. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:804 / 818
页数:15
相关论文
共 9 条
[1]  
Chae D., ARXIV150204793V1
[2]  
Chae D., ARXIV160407643V1
[3]   Liouville-Type Theorems for the Forced Euler Equations and the Navier-Stokes Equations [J].
Chae, Dongho .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) :37-48
[4]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[5]   Uniqueness criterion of weak solutions to the stationary Navier-Stokes equations in exterior domains [J].
Kozono, H ;
Yamazaki, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (08) :959-970
[6]  
Leray J., 1933, J. Math. Pures Appl., V12, P1
[7]  
Lofstrom J., 1976, GRUNDLEHREN MATH WIS, V223
[8]  
Seregin G., ARXIV151202915V1
[9]  
Stein E., 1975, INTRO FOURIER ANAL E