Safe-Bayesian Generalized Linear Regression

被引:0
作者
de Heide, Rianne [1 ,2 ]
Kirichenko, Alisa [3 ]
Mehta, Nishant A. [4 ]
Grunwald, Peter D. [1 ,2 ]
机构
[1] Leiden Univ, Leiden, Netherlands
[2] CWI, Nampa, ID 83687 USA
[3] Univ Oxford, Oxford, England
[4] Univ Victoria, Victoria, BC, Canada
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108 | 2020年 / 108卷
关键词
MODELS; COMPLEXITY; INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study generalized Bayesian inference under misspecification, i.e. when the model is 'wrong but useful'. Generalized Bayes equips the likelihood with a learning rate eta. We show that for generalized linear models (GLMs), eta-generalized Bayes concentrates around the best approximation of the truth within the model for specific eta not equal 1, even under severely misspecified noise, as long as the tails of the true distribution are exponential. We derive MCMC samplers for generalized Bayesian lasso and logistic regression and give examples of both simulated and real-world data in which generalized Bayes substantially outperforms standard Bayes.
引用
收藏
页码:2623 / 2632
页数:10
相关论文
共 36 条
  • [1] [Anonymous], 2007, The minimum description length principle
  • [2] [Anonymous], 2015, OPENAIR MANUAL OPEN
  • [3] [Anonymous], 2014, ARXIV14050506
  • [4] [Anonymous], 2018, BAYESIAN ANAL
  • [5] Barndor -Nielsen O., 1978, Information and Exponential Families in Statistical Theory
  • [6] MINIMUM COMPLEXITY DENSITY-ESTIMATION
    BARRON, AR
    COVER, TM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) : 1034 - 1054
  • [7] Local Rademacher complexities
    Bartlett, PL
    Bousquet, O
    Mendelson, S
    [J]. ANNALS OF STATISTICS, 2005, 33 (04) : 1497 - 1537
  • [8] openair - An R package for air quality data analysis
    Carslaw, David C.
    Ropkins, Karl
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 27-28 : 52 - 61
  • [9] The horseshoe estimator for sparse signals
    Carvalho, Carlos M.
    Polson, Nicholas G.
    Scott, James G.
    [J]. BIOMETRIKA, 2010, 97 (02) : 465 - 480
  • [10] Cesa-Bianchi N., 2006, PREDICTION LEARNING