BLOW-UP RATE OF SOLUTIONS OF PARABOLIC POBLEMS WITH NONLINEAR BOUNDARY CONDITIONS

被引:5
作者
Quittner, Pavol [1 ]
Souplet, Philippe [2 ]
机构
[1] Comenius Univ, Dept Appl Math & Stat, Bratislava 84248, Slovakia
[2] Univ Paris 13, CNRS, Lab Analyse Geometr & Applicat, UMR 7539, F-93430 Villetaneuse, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2012年 / 5卷 / 03期
关键词
Parabolic; nonlinear boundary conditions; blow-up rate; a priori estimate; REACTION-DIFFUSION EQUATIONS; HEAT-EQUATIONS; POSITIVE SOLUTIONS; GLOBAL-SOLUTIONS; UNIVERSAL BOUNDS; THEOREMS; DECAY;
D O I
10.3934/dcdss.2012.5.671
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review known and prove new results on blow-up rate of solutions of parabolic problems with nonlinear boundary conditions. We also compare these results and methods of their proofs with corresponding results and methods for the nonlinear heat equation.
引用
收藏
页码:671 / 681
页数:11
相关论文
共 41 条
[11]  
Chlebík M, 2000, MATH METHOD APPL SCI, V23, P1323, DOI 10.1002/1099-1476(200010)23:15<1323::AID-MMA167>3.0.CO
[12]  
2-W
[13]  
Deng K., 1994, Acta Math. Univ. Comenian. (N.S.), V63, P169
[14]   Complete blow-up and incomplete quenching for the heat equation with a nonlinear boundary condition [J].
Fila, M ;
Guo, JS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (07) :995-1002
[15]   The blow-up rate for semilinear parabolic problems on general domains [J].
Fila, M ;
Souplet, P .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2001, 8 (04) :473-480
[16]   THE BLOW-UP RATE FOR THE HEAT-EQUATION WITH A NONLINEAR BOUNDARY-CONDITION [J].
FILA, M ;
QUITTNER, P .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1991, 14 (03) :197-205
[17]   Blow-up on the boundary for the heat equation [J].
Fila, M ;
Filo, J ;
Lieberman, GM .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (01) :85-99
[18]   Linear and nonlinear heat equations in Lqδ spaces and universal bounds for global solutions [J].
Fila, M ;
Souplet, P ;
Weissler, FB .
MATHEMATISCHE ANNALEN, 2001, 320 (01) :87-113
[19]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[20]   On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary [J].
Galaktionov, VA ;
Levine, HA .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :125-146