LIE SYMMETRY ANALYSIS AND EXACT SOLUTIONS TO N-COUPLED NONLINEAR SCHRODINGER'S EQUATIONS WITH KERR AND PARABOLIC LAW NONLINEARITIES

被引:0
|
作者
Yildirim, Yakup [1 ]
Yasar, Emrullah [1 ]
Triki, Houria [2 ]
Zhou, Qin [3 ]
Moshokoa, Seithuti P. [4 ]
Ullah, Malik Zaka [5 ]
Biswas, Anjan [4 ,5 ]
Belic, Milivoj [6 ]
机构
[1] Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkey
[2] Badji Mokhtar Univ, Dept Phys, Radiat Phys Lab, Fac Sci, POB 12, Annaba 23000, Algeria
[3] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, Jeddah 21589, Saudi Arabia
[6] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
ROMANIAN JOURNAL OF PHYSICS | 2018年 / 63卷 / 1-2期
基金
美国国家科学基金会;
关键词
Lie symmetry analysis; nonlinear Schrodinger's equation; optical solitons; spatio-temporal dispersion; OPTICAL SOLITONS; BIREFRINGENT FIBERS; WAVES;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper addresses N-coupled nonlinear Schrodinger's equation with spatio-temporal dispersion for Kerr and parabolic laws of nonlinearity by the aid of Lie symmetry analysis. We systematically construct similarity reductions to the derived ordinary differential equations by Lie group analysis. These equations lead to exact solutions.
引用
收藏
页数:12
相关论文
共 35 条
  • [1] A Lie symmetry approach to nonlinear Schrodinger's equation with non-Kerr law nonlinearity
    Khalique, C. Masood
    Biswas, Anjan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (12) : 4033 - 4040
  • [2] Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations
    Eslami, Mostafa
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 : 141 - 148
  • [3] Generalized optical soliton solutions to the (3+1)-dimensional resonant nonlinear Schrodinger equation with Kerr and parabolic law nonlinearities
    Sedeeg, Abdelilah Kamal H.
    Nuruddeen, R. I.
    Gomez-Aguilar, J. F.
    OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (06)
  • [4] Stationary Solutions for Nonlinear Schrodinger Equations by Lie Group Analysis
    Rizvi, S. T. Raza
    Afzal, I.
    Ali, K.
    Younis, M.
    ACTA PHYSICA POLONICA A, 2019, 136 (01) : 187 - 189
  • [5] Integrability and soliton solutions for an N-coupled nonlinear Schrodinger system in optical fibers
    Wang, Ming
    Tian, Bo
    Li, Min
    Shan, Wen-Rui
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (19) : 4532 - 4542
  • [6] Lie symmetry analysis for cubic-quartic nonlinear Schrodinger's equation
    Bonsal, Anupma
    Biswas, Anjan
    Zhou, Qin
    Babatin, M. M.
    OPTIK, 2018, 169 : 12 - 15
  • [7] Lie Symmetry Analysis and Exact Solutions of Generalized Fractional Zakharov-Kuznetsov Equations
    Li, Changzhao
    Zhang, Juan
    SYMMETRY-BASEL, 2019, 11 (05):
  • [8] Nonlinear Schrodinger equations with spatio-temporal dispersion in Kerr, parabolic, power and dual power law media: A novel extended Kudryashov's algorithm and soliton solutions
    Yildirim, Yakup
    Celik, Nisa
    Yasar, Emrullah
    RESULTS IN PHYSICS, 2017, 7 : 3116 - 3123
  • [9] Optical solitons to the (n+1)-dimensional nonlinear Schrodinger's equation with Kerr law and power law nonlinearities using two integration schemes
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Bayram, Mustafa
    Baleanu, Dumitru
    MODERN PHYSICS LETTERS B, 2019, 33 (19):
  • [10] Multisoliton solutions and energy sharing collisions in coupled nonlinear Schrodinger equations with focusing, defocusing and mixed type nonlinearities
    Vijayajayanthi, M.
    Kanna, T.
    Lakshmanan, M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 173 : 57 - 80