Determination of minimum-time maneuvers for a robotic manipulator using numerical optimization methods

被引:3
作者
Heilig, J [1 ]
McPhee, J [1 ]
机构
[1] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
来源
MECHANICS OF STRUCTURES AND MACHINES | 1999年 / 27卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Number:; -; Acronym:; NSERC; Sponsor: Natural Sciences and Engineering Research Council of Canada;
D O I
10.1080/08905459908915695
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The productivity of automated production lines depends on the velocities of operating robot manipulators. Hence, time-optimal control for working cycles of robot manipulators are of decisive importance. In this paper, the minimum-time retraction of a robot arm, subject to gravity and suspended on a prismatic-rotational joint, is investigated. Iterative integration methods using a B-spline representation for the actuator force and torque, a Runge-Kutta integration method, and a sequential quadratic programming optimization algorithm are used to calculate the time-optimal control and trajectories. Results show that nonlinear gravity and centrifugal effects are exploited very effectively, to obtain minimum-time maneuvers from an initial to a final state. These states also determine the switching structures of the control. It is demonstrated that even the simple retraction of a robot arm produces unexpectedly complex time-optimal solutions.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 10 条
[1]  
[Anonymous], ASME J DYNAMIC SYSTE
[2]   MINIMUM-TIME CONTROL LAWS FOR ROBOTIC MANIPULATORS [J].
CHEN, YB ;
DESROCHERS, AA .
INTERNATIONAL JOURNAL OF CONTROL, 1993, 57 (01) :1-27
[3]   An improved computation of time-optimal control trajectory for robotic point-to-point motion [J].
Chen, YB ;
Huang, J .
INTERNATIONAL JOURNAL OF CONTROL, 1996, 65 (01) :177-194
[4]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[5]   TIME-OPTIMAL MOTIONS OF ROBOTS IN ASSEMBLY TASKS [J].
GEERING, HP ;
GUZZELLA, L ;
HEPNER, SAR ;
ONDER, CH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (06) :512-518
[6]  
Gill P., 1986, 862 SOL STANF U DEP
[7]   ON THE USE OF CONSISTENT APPROXIMATIONS IN THE SOLUTION OF SEMIINFINITE OPTIMIZATION AND OPTIMAL-CONTROL PROBLEMS [J].
POLAK, E .
MATHEMATICAL PROGRAMMING, 1993, 62 (02) :385-414
[8]  
SCHWARTZ A, 1996, RIOTS A MATLAB TOOLB
[9]  
STEINBACH M, 1989, P 1989 AIAA GUID NAV, P895
[10]  
Vanderplaats G. N., 1984, NUMERICAL OPTIMIZATI