TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity

被引:30
|
作者
Chymkowitch, Pierre [1 ,2 ,3 ]
Nguea, Aurelie [1 ,2 ,3 ]
Aanes, Havard [3 ]
Robertson, Joseph [1 ,2 ,3 ]
Klungland, Arne [3 ,4 ]
Enserink, Jorrit M. [1 ,2 ]
机构
[1] Oslo Univ Hosp, Inst Canc Res, Dept Mol Cell Biol, NO-0379 Oslo, Norway
[2] Univ Oslo, Fac Math & Nat Sci, Dept Biosci, Sect Biochem & Mol Biol, NO-0371 Oslo, Norway
[3] Oslo Univ Hosp, Dept Microbiol, NO-0027 Oslo, Norway
[4] Univ Oslo, Inst Basic Med Sci, Dept Mol Med, NO-0317 Oslo, Norway
关键词
Sumo; transcription; RNA polymerase III; tRNA; TORC1; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTION; PROTEIN; SUMO; YEAST; GENES; IDENTIFICATION; REPRESSION; RAPAMYCIN; NETWORKS;
D O I
10.1073/pnas.1615093114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Maintaining cellular homeostasis under changing nutrient conditions is essential for the growth and development of all organisms. The mechanisms that maintain homeostasis upon loss of nutrient supply are not well understood. By mapping the SUMO proteome in Saccharomyces cerevisiae, we discovered a specific set of differentially sumoylated proteins mainly involved in transcription. RNA polymerase III (RNAPIII) components, including Rpc53, Rpc82, and Ret1, are particularly prominent nutrient-dependent SUMO targets. Nitrogen starvation, as well as direct inhibition of the master nutrient response regulator target of rapamycin complex 1 (TORC1), results in rapid desumoylation of these proteins, which is reflected by loss of SUMO at tRNA genes. TORC1-dependent sumoylation of Rpc82 in particular is required for robust tRNA transcription. Mechanistically, sumoylation of Rpc82 is important for assembly of the RNAPIII holoenzyme and recruitment of Rpc82 to tRNA genes. In conclusion, our data show that TORC1-dependent sumoylation of Rpc82 bolsters the transcriptional capacity of RNAPIII under optimal growth conditions.
引用
收藏
页码:1039 / 1044
页数:6
相关论文
共 50 条
  • [21] EXPRESSION AND RNA-DEPENDENT RNA-POLYMERASE ACTIVITY OF BIRNAVIRUS VP1 PROTEIN IN BACTERIA AND YEAST
    MACREADIE, IG
    AZAD, AA
    BIOCHEMISTRY AND MOLECULAR BIOLOGY INTERNATIONAL, 1993, 30 (06): : 1169 - 1178
  • [22] S. cerevisiae maf1-Δ mutant with high RNA polymerase III activity in silico
    Adamczyk, Malgorzata
    Siedlecki, Pawel
    Kierzek, Andrzej
    Pitruska, Roza
    NEW BIOTECHNOLOGY, 2016, 33 : S187 - S187
  • [23] BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies
    Borck, Guntram
    Hog, Friederike
    Dentici, Maria Lisa
    Tan, Perciliz L.
    Sowada, Nadine
    Medeira, Ana
    Gueneau, Lucie
    Thiele, Holger
    Kousi, Maria
    Lepri, Francesca
    Wenzeck, Larissa
    Blumenthal, Ian
    Radicioni, Antonio
    Schwarzenberg, Tito Livio
    Mandriani, Barbara
    Fischetto, Rita
    Morris-Rosendahl, Deborah J.
    Altmuller, Janine
    Reymond, Alexandre
    Nurnberg, Peter
    Merla, Giuseppe
    Dallapiccola, Bruno
    Katsanis, Nicholas
    Cramer, Patrick
    Kubisch, Christian
    GENOME RESEARCH, 2015, 25 (02) : 155 - 166
  • [24] Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1
    Szatkowska, Roza
    Garcia-Albornoz, Manuel
    Roszkowska, Katarzyna
    Holman, Stephen W.
    Furmanek, Emil
    Hubbard, Simon J.
    Beynon, Robert J.
    Adamczyk, Malgorzata
    BIOCHEMICAL JOURNAL, 2019, 476 : 1053 - 1082
  • [25] ALTERATIONS IN HEPATIC DNA-DEPENDENT RNA POLYMERASE ACTIVITY INDUCED BY AFLATOXIN B1
    PONG, RS
    WOGAN, GN
    PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, 1969, 10 (MAR): : 70 - &
  • [26] Mapping cooperative activity of the hepatitis C virus RNA-dependent RNA polymerase using genotype 1a-1b chimeras
    Gu, BH
    Gutshall, LL
    Maley, D
    Pruss, CM
    Nguyen, TT
    Silverman, CL
    Lin-Goerke, J
    Khandekar, S
    Liu, CB
    Baker, AE
    Casper, DJ
    Sarisky, RT
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 313 (02) : 343 - 350
  • [27] Cdk1 gates cell cycle-dependent tRNA synthesis by regulating RNA polymerase III activity (vol 46, pg 11698, 2018)
    Herrera, Maria C.
    Chymkowitch, Pierre
    Robertson, Joseph M.
    Eriksson, Jens
    Boe, Stig Ove
    Alseth, Ingrun
    Enserink, Jorrit M.
    NUCLEIC ACIDS RESEARCH, 2018, 46 (22) : 12188 - 12189
  • [28] RNF12 catalyzes BRF1 ubiquitination and regulates RNA polymerase III-dependent transcription
    Wang, Fang
    Zhao, Kailiang
    Yu, Sixiang
    Xu, An
    Han, Wei
    Mei, Yide
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (01) : 130 - 141
  • [29] EGO-1, a putative RNA-dependent RNA polymerase, is required for heterochromatin assembly on unpaired DNA during C-elegans meiosis
    Maine, EM
    Hauth, J
    Ratliff, T
    Vought, VE
    She, XY
    Kelly, WG
    CURRENT BIOLOGY, 2005, 15 (21) : 1972 - 1978
  • [30] Murine norovirus-1 3Dpol exhibits RNA-dependent RNA polymerase activity and nucleotidylylates on Tyr of the VPg
    Han, Kang Rok
    Choi, Yubin
    Min, Byung Sup
    Jeong, Hyesook
    Cheon, Doosung
    Kim, Jonghyun
    Jee, Youngmee
    Shin, Sungho
    Yang, Jai Myung
    JOURNAL OF GENERAL VIROLOGY, 2010, 91 : 1711 - 1722