SPARSE MULTIVARIATE FACTOR REGRESSION

被引:0
作者
Kharratzadeh, Milad [1 ]
Coates, Mark [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2T5, Canada
来源
2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP) | 2016年
关键词
Sparse Multivariate Regression; Factor Regression; Low Rank; Sparse Principal Component Analysis; SIMULTANEOUS DIMENSION REDUCTION; SELECTION; LASSO; RECOVERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a sparse multivariate regression algorithm which simultaneously performs dimensionality reduction and parameter estimation. We decompose the coefficient matrix into two sparse matrices: a long matrix mapping the predictors to a set of factors and a wide matrix estimating the responses from the factors. We impose an elastic net penalty on the former and an l(1) penalty on the latter. Our algorithm simultaneously performs dimension reduction and coefficient estimation and automatically estimates the number of latent factors from the data. Our formulation results in a non-convex optimization problem, which despite its flexibility to impose effective low-dimensional structure, is difficult, or even impossible, to solve exactly in a reasonable time. We specify a greedy optimization algorithm based on alternating minimization to solve this non-convex problem and provide theoretical results on its convergence and optimality. Finally, we demonstrate the effectiveness of our algorithm via experiments on simulated and real data.
引用
收藏
页数:5
相关论文
共 50 条
[41]   Blockwise sparse regression [J].
Kim, Yuwon ;
Kim, Jinseog ;
Kim, Yongdai .
STATISTICA SINICA, 2006, 16 (02) :375-390
[42]   SPARSE REDUCED RANK REGRESSION WITH NONCONVEX REGULARIZATION [J].
Zhao, Ziping ;
Palomar, Daniel P. .
2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, :811-815
[43]   Sparse sufficient dimension reduction for directional regression [J].
Kwon, Gayun ;
Noh, Gijeong ;
Kim, Kyongwon .
JOURNAL OF BIG DATA, 2025, 12 (01)
[44]   Sparse Regression Algorithm for Activity Estimation in γ Spectrometry [J].
Sepulcre, Yann ;
Trigano, Thomas ;
Ritov, Ya'acov .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (17) :4347-4359
[45]   Sparse Bayesian Learning via Stepwise Regression [J].
Ament, Sebastian ;
Gomes, Carla .
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
[46]   Principal component-guided sparse regression [J].
Tay, Jingyi K. ;
Friedman, Jerome ;
Tibshirani, Robert .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04) :1222-1257
[47]   A Discussion on Practical Considerations with Sparse Regression Methodologies [J].
Sarwar, Owais ;
Sauk, Benjamin ;
Sahinidis, Nikolaos V. .
STATISTICAL SCIENCE, 2020, 35 (04) :593-601
[48]   Multivariate Multilinear Regression [J].
Su, Ya ;
Gao, Xinbo ;
Li, Xuelong ;
Tao, Dacheng .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (06) :1560-1573
[49]   Sparse Multi-Response Tensor Regression for Alzheimer's Disease Study With Multivariate Clinical Assessments [J].
Li, Zhou ;
Suk, Heung-Il ;
Shen, Dinggang ;
Li, Lexin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (08) :1927-1936
[50]   Fast optimization methods for high-dimensional row-sparse multivariate quantile linear regression [J].
Chen, Bingzhen ;
Chen, Canyi .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (01) :69-102