SPARSE MULTIVARIATE FACTOR REGRESSION

被引:0
作者
Kharratzadeh, Milad [1 ]
Coates, Mark [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2T5, Canada
来源
2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP) | 2016年
关键词
Sparse Multivariate Regression; Factor Regression; Low Rank; Sparse Principal Component Analysis; SIMULTANEOUS DIMENSION REDUCTION; SELECTION; LASSO; RECOVERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a sparse multivariate regression algorithm which simultaneously performs dimensionality reduction and parameter estimation. We decompose the coefficient matrix into two sparse matrices: a long matrix mapping the predictors to a set of factors and a wide matrix estimating the responses from the factors. We impose an elastic net penalty on the former and an l(1) penalty on the latter. Our algorithm simultaneously performs dimension reduction and coefficient estimation and automatically estimates the number of latent factors from the data. Our formulation results in a non-convex optimization problem, which despite its flexibility to impose effective low-dimensional structure, is difficult, or even impossible, to solve exactly in a reasonable time. We specify a greedy optimization algorithm based on alternating minimization to solve this non-convex problem and provide theoretical results on its convergence and optimality. Finally, we demonstrate the effectiveness of our algorithm via experiments on simulated and real data.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Modified intrinsic Bayes factor for multivariate regression models
    Taheri, Marzieh
    Kheradmandnia, Manouchehr
    STATISTICS, 2025, 59 (01) : 61 - 80
  • [22] Sparse reduced-rank regression for multivariate varying-coefficient models
    Zhang, Fode
    Li, Rui
    Lian, Heng
    Bandyopadhyay, Dipankar
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (04) : 752 - 767
  • [23] Sparse reduced-rank regression for exploratory visualisation of paired multivariate data
    Kobak, Dmitry
    Bernaerts, Yves
    Weis, Marissa A.
    Scala, Federico
    Tolias, Andreas
    Berens, Philipp
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2021, 70 (04) : 980 - 1000
  • [24] A two-stage sequential conditional selection approach to sparse high-dimensional multivariate regression models
    Chen, Zehua
    Jiang, Yiwei
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (01) : 65 - 90
  • [25] Detection boundary in sparse regression
    Ingster, Yuri I.
    Tsybakov, Alexandre B.
    Verzelen, Nicolas
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1476 - 1526
  • [26] Scaled sparse linear regression
    Sun, Tingni
    Zhang, Cun-Hui
    BIOMETRIKA, 2012, 99 (04) : 879 - 898
  • [27] Sparse factor regression via penalized maximum likelihood estimation
    Kei Hirose
    Miyuki Imada
    Statistical Papers, 2018, 59 : 633 - 662
  • [28] A sparse regression and neural network approach for financial factor modeling
    Anis, Hassan T.
    Kwon, Roy H.
    APPLIED SOFT COMPUTING, 2021, 113
  • [29] Sparse factor regression via penalized maximum likelihood estimation
    Hirose, Kei
    Imada, Miyuki
    STATISTICAL PAPERS, 2018, 59 (02) : 633 - 662
  • [30] Sparse envelope model: efficient estimation and response variable selection in multivariate linear regression
    Su, Z.
    Zhu, G.
    Chen, X.
    Yang, Y.
    BIOMETRIKA, 2016, 103 (03) : 579 - 593