SPARSE MULTIVARIATE FACTOR REGRESSION

被引:0
作者
Kharratzadeh, Milad [1 ]
Coates, Mark [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2T5, Canada
来源
2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP) | 2016年
关键词
Sparse Multivariate Regression; Factor Regression; Low Rank; Sparse Principal Component Analysis; SIMULTANEOUS DIMENSION REDUCTION; SELECTION; LASSO; RECOVERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a sparse multivariate regression algorithm which simultaneously performs dimensionality reduction and parameter estimation. We decompose the coefficient matrix into two sparse matrices: a long matrix mapping the predictors to a set of factors and a wide matrix estimating the responses from the factors. We impose an elastic net penalty on the former and an l(1) penalty on the latter. Our algorithm simultaneously performs dimension reduction and coefficient estimation and automatically estimates the number of latent factors from the data. Our formulation results in a non-convex optimization problem, which despite its flexibility to impose effective low-dimensional structure, is difficult, or even impossible, to solve exactly in a reasonable time. We specify a greedy optimization algorithm based on alternating minimization to solve this non-convex problem and provide theoretical results on its convergence and optimality. Finally, we demonstrate the effectiveness of our algorithm via experiments on simulated and real data.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Bayesian sparse reduced rank multivariate regression
    Goh, Gyuhyeong
    Dey, Dipak K.
    Chen, Kun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 157 : 14 - 28
  • [2] Sparse Multivariate Regression With Covariance Estimation
    Rothman, Adam J.
    Levina, Elizaveta
    Zhu, Ji
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) : 947 - 962
  • [3] Fast Stagewise Sparse Factor Regression
    Chen, Kun
    Dong, Ruipeng
    Xu, Wanwan
    Zheng, Zemin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [4] Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis
    Zhou, Yan
    Wang, Pei
    Wang, Xianlong
    Zhu, Ji
    Song, Peter X. -K.
    GENETIC EPIDEMIOLOGY, 2017, 41 (01) : 70 - 80
  • [5] Sequential Co-Sparse Factor Regression
    Mishra, Aditya
    Dey, Dipak K.
    Chen, Kun
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (04) : 814 - 825
  • [6] Depth-weighted robust multivariate regression with application to sparse data
    Dutta, Subhajit
    Genton, Marc G.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (02): : 164 - 184
  • [7] LARGE-SCALE MULTIVARIATE SPARSE REGRESSION WITH APPLICATIONS TO UK BIOBANK
    Qian, Junyang
    Tanigawa, Yosuke
    Li, Ruilin
    Tibshirani, Robert
    Rivas, Manuel A.
    Hastie, Trevor
    ANNALS OF APPLIED STATISTICS, 2022, 16 (03) : 1891 - 1918
  • [8] Multivariate Regression with Calibration
    Liu, Han
    Wang, Lie
    Zhao, Tuo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [9] Signal extraction approach for sparse multivariate response regression
    Luo, Ruiyan
    Qi, Xin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 153 : 83 - 97
  • [10] Sequential Scaled Sparse Factor Regression
    Zheng, Zemin
    Li, Yang
    Wu, Jie
    Wang, Yuchen
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (02) : 595 - 604