Sparse Matrix-Vector Multiplication Cache Performance Evaluation and Design Exploration

被引:0
|
作者
Cui, Jianfeng [1 ]
Lu, Kai [1 ]
Liu, Sheng [2 ]
机构
[1] Natl Univ Def Technol, Sch Comp, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sci & Technol Parallel & Distributed Proc Lab, Changsha 410073, Hunan, Peoples R China
来源
29TH INTERNATIONAL SYMPOSIUM ON THE MODELING, ANALYSIS, AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (MASCOTS 2021) | 2021年
关键词
SpMV; cache; sparse; matrix; PIN; simulation;
D O I
10.1109/MASCOTS53633.2021.9614301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we conducted a group of evaluations on the SpMV kernel with sequential implementation to investigate cache performance on single-core platforms. We verified a similar pattern inside a suite of sparse matrices covering various domains, which makes cache hit rate extraordinary inspiring in a sequential environment. This implicit regularity drove us to propose a cache space splitting approach, aiming at a better locality in dense vector accessing and utilization of large cache capacity in modern processors. Finally, we explored the design space of cache on Matrix 3000 GPDSP and proposed a group of cache parameters, based on our experimental results.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [1] Node aware sparse matrix-vector multiplication
    Bienz, Amanda
    Gropp, William D.
    Olson, Luke N.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 130 : 166 - 178
  • [2] Sparse Matrix-Vector Multiplication on GPGPUs
    Filippone, Salvatore
    Cardellini, Valeria
    Barbieri, Davide
    Fanfarillo, Alessandro
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):
  • [3] Improving the Performance of the Symmetric Sparse Matrix-Vector Multiplication in Multicore
    Gkountouvas, Theodoros
    Karakasis, Vasileios
    Kourtis, Kornilios
    Goumas, Georgios
    Koziris, Nectarios
    IEEE 27TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2013), 2013, : 273 - 283
  • [4] Breaking the performance bottleneck of sparse matrix-vector multiplication on SIMD processors
    Zhang, Kai
    Chen, Shuming
    Wang, Yaohua
    Wan, Jianghua
    IEICE ELECTRONICS EXPRESS, 2013, 10 (09):
  • [5] Adaptive sparse matrix representation for efficient matrix-vector multiplication
    Zardoshti, Pantea
    Khunjush, Farshad
    Sarbazi-Azad, Hamid
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (09) : 3366 - 3386
  • [6] Adaptive diagonal sparse matrix-vector multiplication on GPU
    Gao, Jiaquan
    Xia, Yifei
    Yin, Renjie
    He, Guixia
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2021, 157 : 287 - 302
  • [7] Parallel Sparse Matrix-Vector Multiplication Using Accelerators
    Maeda, Hiroshi
    Takahashi, Daisuke
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2016, PT II, 2016, 9787 : 3 - 18
  • [8] A New Method of Sparse Matrix-Vector Multiplication on GPU
    Huan, Gao
    Qian, Zhang
    PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 954 - 958
  • [9] Optimization techniques for sparse matrix-vector multiplication on GPUs
    Maggioni, Marco
    Berger-Wolf, Tanya
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2016, 93-94 : 66 - 86
  • [10] Efficient Zero/One Matrix-Vector Multiplication Based on Cache
    Li, Yu
    Xiang, Li Yuan
    Xiong, Naixue
    Yang, Laurence T.
    CSA 2008: INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND ITS APPLICATIONS, PROCEEDINGS, 2008, : 78 - +