Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks

被引:51
作者
Birenbaum, Ariel [1 ]
Greenspan, Hayit [2 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn, Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Biomed Engn, Tel Aviv, Israel
来源
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS | 2016年 / 10008卷
关键词
Multiple Sclerosis; CNN; Segmentation; Longitudinal data; BRAIN; ATLAS;
D O I
10.1007/978-3-319-46976-8_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic segmentation of Multiple Sclerosis (MS) lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. A reliable, automatic segmentation method can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. In this paper, we present a fully automated method for MS lesion segmentation. The proposed method uses MR intensities and White Matter (WM) priors for extraction of candidate lesion voxels and uses Convolutional Neural Networks for false positive reduction. Our networks process longitudinal data, a novel contribution in the domain of MS lesion analysis. The method was tested on the ISBI 2015 dataset and obtained state-of-the-art Dice results with the performance level of a trained human rater.
引用
收藏
页码:58 / 67
页数:10
相关论文
共 50 条
  • [41] TBI CONTUSION SEGMENTATION FROM MRI USING CONVOLUTIONAL NEURAL NETWORKS
    Roy, Snehashis
    Butman, John A.
    Chan, Leighton
    Pham, Dzung L.
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 158 - 162
  • [42] Multi-modal MRI segmentation of sarcoma tumors using convolutional neural networks
    Holbrook, M.
    Blocker, S. J.
    Mowery, Y. M.
    Badea, C. T.
    [J]. MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING, 2019, 10948
  • [43] Retinal Vessel Segmentation Using Convolutional Neural Networks
    Guleryuz, Mehmet Sefik
    Ulusoy, Ilkay
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [44] Automatic Tumor Segmentation Using Convolutional Neural Networks
    Sankari, A.
    Vigneshwari, S.
    [J]. 2017 THIRD INTERNATIONAL CONFERENCE ON SCIENCE TECHNOLOGY ENGINEERING & MANAGEMENT (ICONSTEM), 2017, : 268 - 272
  • [45] Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images
    Kaur, Ranpreet
    GholamHosseini, Hamid
    Sinha, Roopak
    Linden, Maria
    [J]. BMC MEDICAL IMAGING, 2022, 22 (01)
  • [46] Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images
    Ranpreet Kaur
    Hamid GholamHosseini
    Roopak Sinha
    Maria Lindén
    [J]. BMC Medical Imaging, 22
  • [47] A toolbox for multiple sclerosis lesion segmentation
    Eloy Roura
    Arnau Oliver
    Mariano Cabezas
    Sergi Valverde
    Deborah Pareto
    Joan C. Vilanova
    Lluís Ramió-Torrentà
    Àlex Rovira
    Xavier Lladó
    [J]. Neuroradiology, 2015, 57 : 1031 - 1043
  • [48] A toolbox for multiple sclerosis lesion segmentation
    Roura, Eloy
    Oliver, Arnau
    Cabezas, Mariano
    Valverde, Sergi
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    [J]. NEURORADIOLOGY, 2015, 57 (10) : 1031 - 1043
  • [49] A unified approach for lesion segmentation on MRI of multiple sclerosis
    Sajja, BR
    Datta, S
    He, R
    Narayana, PA
    [J]. PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1778 - 1781
  • [50] A multi-view recurrent neural network for 3D mesh segmentation
    Le, Truc
    Bui, Giang
    Duan, Ye
    [J]. COMPUTERS & GRAPHICS-UK, 2017, 66 : 103 - 112