Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks

被引:51
作者
Birenbaum, Ariel [1 ]
Greenspan, Hayit [2 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn, Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Biomed Engn, Tel Aviv, Israel
来源
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS | 2016年 / 10008卷
关键词
Multiple Sclerosis; CNN; Segmentation; Longitudinal data; BRAIN; ATLAS;
D O I
10.1007/978-3-319-46976-8_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic segmentation of Multiple Sclerosis (MS) lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. A reliable, automatic segmentation method can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. In this paper, we present a fully automated method for MS lesion segmentation. The proposed method uses MR intensities and White Matter (WM) priors for extraction of candidate lesion voxels and uses Convolutional Neural Networks for false positive reduction. Our networks process longitudinal data, a novel contribution in the domain of MS lesion analysis. The method was tested on the ISBI 2015 dataset and obtained state-of-the-art Dice results with the performance level of a trained human rater.
引用
收藏
页码:58 / 67
页数:10
相关论文
共 50 条
  • [31] Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
    Nair, Tanya
    Precup, Doina
    Arnold, Douglas L.
    Arbel, Tal
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 655 - 663
  • [32] Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation
    Nair, Tanya
    Precup, Doina
    Arnold, Douglas L.
    Arbel, Tal
    MEDICAL IMAGE ANALYSIS, 2020, 59
  • [33] Using Convolutional Encoder Networks to Determine the Optimal Magnetic Resonance Image for the Automatic Segmentation of Multiple Sclerosis
    Ghosh, Shaurnav
    Huo, Marc
    Shawkat, Mst Shamim Ara
    McCalla, Serena
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [34] Acute ischemic stroke lesion segmentation in non-contrast CT images using 3D convolutional neural networks
    Dobshik, A. V.
    Verbitskiy, S. K.
    Pestunov, I. A.
    Sherman, K. M.
    Sinyavskiy, Yu. N.
    Tulupov, A. A.
    Berikov, V. B.
    COMPUTER OPTICS, 2023, 47 (05) : 770 - 777
  • [35] Skin Lesion Segmentation with Improved Convolutional Neural Network
    Ozturk, Saban
    Ozkaya, Umut
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (04) : 958 - 970
  • [36] Skin Lesion Segmentation with Improved Convolutional Neural Network
    Şaban Öztürk
    Umut Özkaya
    Journal of Digital Imaging, 2020, 33 : 958 - 970
  • [37] Stroke Lesion Detection Using Convolutional Neural Networks
    Pereira, Danillo Roberto
    Reboucas Filho, Pedro P.
    de Rosa, Gustavo Henrique
    Papa, Joao Paulo
    de Albuquerque, Victor Hugo C.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [38] Fast and robust segmentation of the striatum using deep convolutional neural networks
    Choi, Hongyoon
    Jin, Kyong Hwan
    JOURNAL OF NEUROSCIENCE METHODS, 2016, 274 : 146 - 153
  • [39] Classification and Segmentation of Longitudinal Road Marking Using Convolutional Neural Networks for Dynamic Retroreflection Estimation
    Chun, Chanjun
    Lee, Taehee
    Kwon, Sungil
    Ryu, Seung-Ki
    SENSORS, 2020, 20 (19) : 1 - 12
  • [40] Multi-Sequence Learning for Multiple Sclerosis Lesion Segmentation in Spinal Cord MRI
    Walsh, Ricky
    Gaubert, Malo
    Meuree, Cedric
    Hussein, Burhan Rashid
    Kerbrat, Anne
    Casey, Romain
    Combes, Benoit
    Galassi, Francesca
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IX, 2024, 15009 : 478 - 487