Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks

被引:51
|
作者
Birenbaum, Ariel [1 ]
Greenspan, Hayit [2 ]
机构
[1] Tel Aviv Univ, Dept Elect Engn, Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Biomed Engn, Tel Aviv, Israel
来源
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS | 2016年 / 10008卷
关键词
Multiple Sclerosis; CNN; Segmentation; Longitudinal data; BRAIN; ATLAS;
D O I
10.1007/978-3-319-46976-8_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic segmentation of Multiple Sclerosis (MS) lesions is a challenging task due to their variability in shape, size, location and texture in Magnetic Resonance (MR) images. A reliable, automatic segmentation method can help diagnosis and patient follow-up while reducing the time consuming need of manual segmentation. In this paper, we present a fully automated method for MS lesion segmentation. The proposed method uses MR intensities and White Matter (WM) priors for extraction of candidate lesion voxels and uses Convolutional Neural Networks for false positive reduction. Our networks process longitudinal data, a novel contribution in the domain of MS lesion analysis. The method was tested on the ISBI 2015 dataset and obtained state-of-the-art Dice results with the performance level of a trained human rater.
引用
收藏
页码:58 / 67
页数:10
相关论文
共 50 条
  • [1] Multi-view longitudinal CNN for multiple sclerosis lesion segmentation
    Birenbaum, Ariel
    Greenspan, Hayit
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 65 : 111 - 118
  • [2] Multiple Sclerosis Lesion Segmentation Using Longitudinal Normalization and Convolutional Recurrent Neural Networks
    Tascon-Morales, Sergio
    Hoffmann, Stefan
    Treiber, Martin
    Mensing, Daniel
    Oliver, Arnau
    Guenther, Matthias
    Gregori, Johannes
    MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 148 - 158
  • [3] Multi-branch convolutional neural network for multiple sclerosis lesion segmentation
    Aslani, Shahab
    Dayan, Michael
    Storelli, Loredana
    Filippi, Massimo
    Murino, Vittorio
    Rocca, Maria A.
    Sona, Diego
    NEUROIMAGE, 2019, 196 : 1 - 15
  • [4] One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks
    Valverde, Sergi
    Salem, Mostafa
    Cabezas, Mariano
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Salvi, Joaquim
    Oliver, Arnau
    Llado, Xavier
    NEUROIMAGE-CLINICAL, 2019, 21
  • [5] Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence
    McKinley, Richard
    Wepfer, Rik
    Grunder, Lorenz
    Aschwanden, Fabian
    Fischer, Tim
    Friedli, Christoph
    Muri, Raphaela
    Rummel, Christian
    Verma, Rajeev
    Weisstanner, Christian
    Wiestler, Benedikt
    Berger, Christoph
    Eichinger, Paul
    Muhlau, Mark
    Reyes, Mauricio
    Salmen, Anke
    Chan, Andrew
    Wiest, Roland
    Wagner, Franca
    NEUROIMAGE-CLINICAL, 2020, 25
  • [6] Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation
    Brosch, Tom
    Yoo, Youngjin
    Tang, Lisa Y. W.
    Li, David K. B.
    Traboulsee, Anthony
    Tam, Roger
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 3 - 11
  • [7] Quantification of Brain Lesions in Multiple Sclerosis Patients using Segmentation by Convolutional Neural Networks
    de Oliveira, Marcela
    Santinelli, Felipe Balistieri
    Piacenti-Silva, Marina
    Gomes Rocha, Fernando Coronetti
    Barbieri, Fabio Augusto
    Lisboa-Filho, Paulo Noronha
    Santos, Jorge Manuel
    Cardoso, Jaime dos Santos
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2045 - 2048
  • [8] DeepCONN: patch-wise deep convolutional neural networks for the segmentation of multiple sclerosis brain lesions
    Kaur, Amrita
    Kaur, Lakhwinder
    Singh, Ashima
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 24401 - 24433
  • [9] Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks
    Afzal, H. M. Rehan
    Luo, Suhuai
    Ramadan, Saadallah
    Lechner-Scott, Jeannette
    Amin, Mohammad Ruhul
    Li, Jiaming
    Afzal, M. Kamran
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01): : 977 - 991
  • [10] Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks
    Gros, Charley
    De Leener, Benjamin
    Badji, Atef
    Maranzano, Josefina
    Eden, Dominique
    Dupont, Sara M.
    Talbott, Jason
    Ren Zhuoquiong
    Liu, Yaou
    Granberg, Tobias
    Ouellette, Russell
    Tachibana, Yasuhiko
    Hori, Masaaki
    Kamiya, Kouhei
    Chougar, Lydia
    Stawiarz, Leszek
    Hillert, Jan
    Bannier, Ellise
    Kerbrat, Anne
    Edan, Gilles
    Labauge, Pierre
    Callot, Virginie
    Pelletier, Jean
    Audoin, Bertrand
    Rasoanandrianina, Henitsoa
    Brisset, Jean-Christophe
    Valsasina, Paola
    Rocca, Maria A.
    Filippi, Massimo
    Bakshi, Rohit
    Tauhid, Shahamat
    Prados, Ferran
    Yiannakas, Marios
    Kearney, Hugh
    Ciccarelli, Olga
    Smith, Seth
    Treaba, Constantino Andrada
    Mainero, Caterina
    Lefeuvre, Jennifer
    Reich, Daniel S.
    Nair, Govind
    Auclair, Vincent
    McLaren, Donald G.
    Martin, Allan R.
    Fehlings, Michael G.
    Vahdat, Shahabeddin
    Khatibi, Ali
    Doyon, Julien
    Shepherd, Timothy
    Charlson, Erik
    NEUROIMAGE, 2019, 184 : 901 - 915